Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 1/2019

Open Access 01-07-2019 | NSCLC | Original Article

Resistance models to EGFR inhibition and chemotherapy in non-small cell lung cancer via analysis of tumour size dynamics

Authors: Hitesh B. Mistry, Gabriel Helmlinger, Nidal Al-Huniti, Karthick Vishwanathan, James Yates

Published in: Cancer Chemotherapy and Pharmacology | Issue 1/2019

Login to get access

Abstract

Purpose

Imaging time-series data routinely collected in clinical trials are predominantly explored for covariates as covariates for survival analysis to support decision-making in oncology drug development. The key objective of this study was to assess if insights regarding two relapse resistance modes, de-novo (treatment selects out a pre-existing resistant clone) or acquired (resistant clone develops during treatment), could be inferred from such data.

Methods

Individual lesion size time-series data were collected from ten Phase III study arms where patients were treated with either first-generation EGFR inhibitors (erlotinib or gefitinib) or chemotherapy (paclitaxel/carboplatin combination or docetaxel). The data for each arm of each study were analysed via a competing models framework to determine which of the two mathematical models of resistance, de-novo or acquired, best-described the data.

Results

Within the first-line setting (treatment naive patients), we found that the de-novo model best-described the gefitinib data, whereas, for paclitaxel/carboplatin, the acquired model was preferred. In patients pre-treated with paclitaxel/carboplatin, the acquired model was again preferred for docetaxel (chemotherapy), but for patients receiving gefitinib or erlotinib, both the acquired and de-novo models described the tumour size dynamics equally well. Furthermore, in all studies where a single model was preferred, we found a degree of correlation in the dynamics of lesions within a patient, suggesting that there is a degree of homogeneity in pharmacological response.

Conclusions

This analysis highlights that tumour size dynamics differ between different treatments and across lines of treatment. The analysis further suggests that these differences could be a manifestation of differing resistance mechanisms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefPubMed Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefPubMed
3.
go back to reference Ribba B, Holford NH, Magni P et al (2014) A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet Sys Pharmacol 3:1–10 Ribba B, Holford NH, Magni P et al (2014) A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet Sys Pharmacol 3:1–10
9.
go back to reference Yule GU (1927) On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers. Philos Trans R Soc Lond Ser Contain Pap Math Phys Character 226:267–298CrossRef Yule GU (1927) On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers. Philos Trans R Soc Lond Ser Contain Pap Math Phys Character 226:267–298CrossRef
10.
go back to reference R Development Core Team (2011) R: a language and environment for statistical computing. the R Foundation for Statistical Computing, Vienna R Development Core Team (2011) R: a language and environment for statistical computing. the R Foundation for Statistical Computing, Vienna
11.
go back to reference (2000) Fitting linear mixed-effects models. In: Mixed-effects models in S and S-PLUS. Springer New York, pp 133–199 (2000) Fitting linear mixed-effects models. In: Mixed-effects models in S and S-PLUS. Springer New York, pp 133–199
12.
go back to reference Fukuoka M, Wu Y-L, Thongprasert S et al (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non–small-cell lung cancer in Asia (IPASS). J Clin Oncol 29:2866–2874. https://doi.org/10.1200/JCO.2010.33.4235 CrossRefPubMed Fukuoka M, Wu Y-L, Thongprasert S et al (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non–small-cell lung cancer in Asia (IPASS). J Clin Oncol 29:2866–2874. https://​doi.​org/​10.​1200/​JCO.​2010.​33.​4235 CrossRefPubMed
13.
22.
go back to reference Dexter DL, Leith JT (1986) Tumor heterogeneity and drug resistance. J Clin Oncol Off J Am Soc Clin Oncol 4:244–257CrossRef Dexter DL, Leith JT (1986) Tumor heterogeneity and drug resistance. J Clin Oncol Off J Am Soc Clin Oncol 4:244–257CrossRef
24.
Metadata
Title
Resistance models to EGFR inhibition and chemotherapy in non-small cell lung cancer via analysis of tumour size dynamics
Authors
Hitesh B. Mistry
Gabriel Helmlinger
Nidal Al-Huniti
Karthick Vishwanathan
James Yates
Publication date
01-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 1/2019
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-019-03840-3

Other articles of this Issue 1/2019

Cancer Chemotherapy and Pharmacology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine