Skip to main content
Top
Published in: Annals of Hematology 7/2011

01-07-2011 | Original Article

Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells

Authors: Kevin Kemp, Ruth Morse, Kelly Sanders, Jill Hows, Craig Donaldson

Published in: Annals of Hematology | Issue 7/2011

Login to get access

Abstract

The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.
Literature
1.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRef
2.
go back to reference Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA (1997) Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27(5–6):375–386PubMed Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA (1997) Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27(5–6):375–386PubMed
3.
go back to reference Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9(6):841–848PubMedCrossRef Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9(6):841–848PubMedCrossRef
4.
go back to reference Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66PubMedCrossRef Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66PubMedCrossRef
5.
go back to reference Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N, Ogawa R, Good RA, Ikehara S (1994) Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 152(6):3119–3127PubMed Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N, Ogawa R, Good RA, Ikehara S (1994) Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 152(6):3119–3127PubMed
6.
go back to reference Domenech J, Roingeard F, Herault O, Truglio D, Desbois I, Colombat P, Binet C (1998) Changes in the functional capacity of marrow stromal cells after autologous bone marrow transplantation. Leuk Lymphoma 29(5–6):533–546PubMedCrossRef Domenech J, Roingeard F, Herault O, Truglio D, Desbois I, Colombat P, Binet C (1998) Changes in the functional capacity of marrow stromal cells after autologous bone marrow transplantation. Leuk Lymphoma 29(5–6):533–546PubMedCrossRef
7.
go back to reference Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, Dufour C, Ferrara GB, Abbondandolo A, Dini G, Bacigalupo A, Cancedda R, Quarto R (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27(9):1460–1466PubMedCrossRef Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, Dufour C, Ferrara GB, Abbondandolo A, Dini G, Bacigalupo A, Cancedda R, Quarto R (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27(9):1460–1466PubMedCrossRef
8.
go back to reference O’Flaherty E, Sparrow R, Szer J (1995) Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant 15(2):207–212PubMed O’Flaherty E, Sparrow R, Szer J (1995) Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant 15(2):207–212PubMed
9.
go back to reference Carlo-Stella C, Tabilio A, Regazzi E, Garau D, La Tagliata R, Trasarti S, Andrizzi C, Vignetti M, Meloni G (1997) Effect of chemotherapy for acute myelogenous leukemia on hematopoietic and fibroblast marrow progenitors. Bone Marrow Transplant 20(6):465–471PubMedCrossRef Carlo-Stella C, Tabilio A, Regazzi E, Garau D, La Tagliata R, Trasarti S, Andrizzi C, Vignetti M, Meloni G (1997) Effect of chemotherapy for acute myelogenous leukemia on hematopoietic and fibroblast marrow progenitors. Bone Marrow Transplant 20(6):465–471PubMedCrossRef
10.
go back to reference Corazza F, Hermans C, Ferster A, Fondu P, Demulder A, Sariban E (2004) Bone marrow stroma damage induced by chemotherapy for acute lymphoblastic leukemia in children. Pediatr Res 55(1):152–158PubMedCrossRef Corazza F, Hermans C, Ferster A, Fondu P, Demulder A, Sariban E (2004) Bone marrow stroma damage induced by chemotherapy for acute lymphoblastic leukemia in children. Pediatr Res 55(1):152–158PubMedCrossRef
11.
go back to reference Banfi A, Podesta M, Fazzuoli L, Sertoli MR, Venturini M, Santini G, Cancedda R, Quarto R (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92(9):2419–2428PubMedCrossRef Banfi A, Podesta M, Fazzuoli L, Sertoli MR, Venturini M, Santini G, Cancedda R, Quarto R (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92(9):2419–2428PubMedCrossRef
12.
go back to reference Cohen GI, Greenberger JS, Canellos GP (1982) Effect of chemotherapy and irradiation on interactions between stromal and hemopoietic cells in vitro. Scan Electron Microsc Pt 1:359–365PubMed Cohen GI, Greenberger JS, Canellos GP (1982) Effect of chemotherapy and irradiation on interactions between stromal and hemopoietic cells in vitro. Scan Electron Microsc Pt 1:359–365PubMed
13.
go back to reference Domaratskaia EI, Bueverova EI, Paiushina OD, Starostin VI (2005) Alkylating damage by dipin of hematopoietic and stromal cells of the bone marrow. Izv Akad Nauk Ser Biol 3:267–272PubMed Domaratskaia EI, Bueverova EI, Paiushina OD, Starostin VI (2005) Alkylating damage by dipin of hematopoietic and stromal cells of the bone marrow. Izv Akad Nauk Ser Biol 3:267–272PubMed
14.
go back to reference Domenech J, Gihana E, Dayan A, Truglio D, Linassier C, Desbois I, Lamagnere JP, Colombat P, Binet C (1994) Haemopoiesis of transplanted patients with autologous marrows assessed by long-term marrow culture. Br J Haematol 88(3):488–496PubMedCrossRef Domenech J, Gihana E, Dayan A, Truglio D, Linassier C, Desbois I, Lamagnere JP, Colombat P, Binet C (1994) Haemopoiesis of transplanted patients with autologous marrows assessed by long-term marrow culture. Br J Haematol 88(3):488–496PubMedCrossRef
15.
go back to reference Fried W, Chamberlin W, Kedo A, Barone J (1976) Effects of radiation on hematopoietic stroma. Exp Hematol 4(5):310–314PubMed Fried W, Chamberlin W, Kedo A, Barone J (1976) Effects of radiation on hematopoietic stroma. Exp Hematol 4(5):310–314PubMed
16.
go back to reference Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C (2010) Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89(7):701–713PubMedCrossRef Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C (2010) Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89(7):701–713PubMedCrossRef
17.
go back to reference Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328(6129):429–432PubMedCrossRef Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328(6129):429–432PubMedCrossRef
18.
go back to reference Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, Rizzoli V, Aversa F, Martelli MF, Tabilio A (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96(10):3637–3643PubMed Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, Rizzoli V, Aversa F, Martelli MF, Tabilio A (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96(10):3637–3643PubMed
19.
go back to reference Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27(11):1675–1681PubMedCrossRef Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27(11):1675–1681PubMedCrossRef
20.
go back to reference Fibbe WE, Noort WA, Schipper F, Willemze R (2001) Ex vivo expansion and engraftment potential of cord blood-derived CD34+ cells in NOD/SCID mice. Ann NY Acad Sci 938:9–17PubMedCrossRef Fibbe WE, Noort WA, Schipper F, Willemze R (2001) Ex vivo expansion and engraftment potential of cord blood-derived CD34+ cells in NOD/SCID mice. Ann NY Acad Sci 938:9–17PubMedCrossRef
21.
go back to reference Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 27(10):1569–1575PubMedCrossRef Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 27(10):1569–1575PubMedCrossRef
22.
go back to reference Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, Krause DS (2003) Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 31(5):413–420PubMedCrossRef Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, Krause DS (2003) Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 31(5):413–420PubMedCrossRef
23.
go back to reference in’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 31(10):881–889CrossRef in’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 31(10):881–889CrossRef
24.
go back to reference Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316PubMed Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316PubMed
25.
go back to reference Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374PubMedCrossRef Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374PubMedCrossRef
26.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRef
27.
go back to reference Chen TL, Passos-Coelho JL, Noe DA, Kennedy MJ, Black KC, Colvin OM, Grochow LB (1995) Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 55(4):810–816PubMed Chen TL, Passos-Coelho JL, Noe DA, Kennedy MJ, Black KC, Colvin OM, Grochow LB (1995) Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 55(4):810–816PubMed
28.
go back to reference Li J, Law HK, Lau YL, Chan GC (2004) Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 127(3):326–334PubMedCrossRef Li J, Law HK, Lau YL, Chan GC (2004) Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 127(3):326–334PubMedCrossRef
29.
go back to reference Lazarus HM, Herzig RH, Graham-Pole J, Wolff SN, Phillips GL, Strandjord S, Hurd D, Forman W, Gordon EM, Coccia P et al (1983) Intensive melphalan chemotherapy and cryopreserved autologous bone marrow transplantation for the treatment of refractory cancer. J Clin Oncol 1(6):359–367PubMed Lazarus HM, Herzig RH, Graham-Pole J, Wolff SN, Phillips GL, Strandjord S, Hurd D, Forman W, Gordon EM, Coccia P et al (1983) Intensive melphalan chemotherapy and cryopreserved autologous bone marrow transplantation for the treatment of refractory cancer. J Clin Oncol 1(6):359–367PubMed
30.
go back to reference Pinguet F, Martel P, Fabbro M, Petit I, Canal P, Culine S, Astre C, Bressolle F (1997) Pharmacokinetics of high-dose intravenous melphalan in patients undergoing peripheral blood hematopoietic progenitor-cell transplantation. Anticancer Res 17(1B):605–611PubMed Pinguet F, Martel P, Fabbro M, Petit I, Canal P, Culine S, Astre C, Bressolle F (1997) Pharmacokinetics of high-dose intravenous melphalan in patients undergoing peripheral blood hematopoietic progenitor-cell transplantation. Anticancer Res 17(1B):605–611PubMed
31.
go back to reference Alberts DS, Chang SY, Chen HS, Larcom BJ, Evans TL (1980) Comparative pharmacokinetics of chlorambucil and melphalan in man. Recent Results Cancer Res 74:124–131PubMed Alberts DS, Chang SY, Chen HS, Larcom BJ, Evans TL (1980) Comparative pharmacokinetics of chlorambucil and melphalan in man. Recent Results Cancer Res 74:124–131PubMed
32.
go back to reference Rooney PH, Telfer C, McFadyen MC, Melvin WT, Murray GI (2004) The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions. Curr Cancer Drug Targets 4(3):257–265PubMedCrossRef Rooney PH, Telfer C, McFadyen MC, Melvin WT, Murray GI (2004) The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions. Curr Cancer Drug Targets 4(3):257–265PubMedCrossRef
33.
go back to reference Nieto Y, Vaughan WP (2004) Pharmacokinetics of high-dose chemotherapy. Bone Marrow Transplant 33(3):259–269PubMedCrossRef Nieto Y, Vaughan WP (2004) Pharmacokinetics of high-dose chemotherapy. Bone Marrow Transplant 33(3):259–269PubMedCrossRef
34.
go back to reference Hows JM, Bradley BA, Marsh JC, Luft T, Coutinho L, Testa NG, Dexter TM (1992) Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet 340(8811):73–76PubMedCrossRef Hows JM, Bradley BA, Marsh JC, Luft T, Coutinho L, Testa NG, Dexter TM (1992) Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet 340(8811):73–76PubMedCrossRef
36.
go back to reference Ghaffari S, Smadja-Joffe F, Oostendorp R, Levesque JP, Dougherty G, Eaves A, Eaves C (1999) CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 27(6):978–993PubMedCrossRef Ghaffari S, Smadja-Joffe F, Oostendorp R, Levesque JP, Dougherty G, Eaves A, Eaves C (1999) CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 27(6):978–993PubMedCrossRef
37.
go back to reference Liu J, Jiang G (2006) CD44 and hematologic malignancies. Cell Mol Immunol 3(5):359–365PubMed Liu J, Jiang G (2006) CD44 and hematologic malignancies. Cell Mol Immunol 3(5):359–365PubMed
38.
go back to reference Ponta H, Wainwright D, Herrlich P (1998) The CD44 protein family. Int J Biochem Cell Biol 30(3):299–305PubMedCrossRef Ponta H, Wainwright D, Herrlich P (1998) The CD44 protein family. Int J Biochem Cell Biol 30(3):299–305PubMedCrossRef
39.
go back to reference Sneath RJ, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. Mol Pathol 51(4):191–200PubMedCrossRef Sneath RJ, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. Mol Pathol 51(4):191–200PubMedCrossRef
40.
go back to reference Zheng H, Wang X, Legerski RJ, Glazer PM, Li L (2006) Repair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways. DNA Repair (Amst) 5(5):566–574CrossRef Zheng H, Wang X, Legerski RJ, Glazer PM, Li L (2006) Repair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways. DNA Repair (Amst) 5(5):566–574CrossRef
41.
go back to reference Huitema AD, Smits KD, Mathot RA, Schellens JH, Rodenhuis S, Beijnen JH (2000) The clinical pharmacology of alkylating agents in high-dose chemotherapy. Anticancer Drugs 11(7):515–533PubMedCrossRef Huitema AD, Smits KD, Mathot RA, Schellens JH, Rodenhuis S, Beijnen JH (2000) The clinical pharmacology of alkylating agents in high-dose chemotherapy. Anticancer Drugs 11(7):515–533PubMedCrossRef
42.
go back to reference Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70(5):408–415PubMedCrossRef Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70(5):408–415PubMedCrossRef
43.
go back to reference Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hemotopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30(8):993–1003PubMedCrossRef Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hemotopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30(8):993–1003PubMedCrossRef
44.
go back to reference Hochhauser D (1997) Modulation of chemosensitivity through altered expression of cell cycle regulatory genes in cancer. Anticancer Drugs 8(10):903–910PubMedCrossRef Hochhauser D (1997) Modulation of chemosensitivity through altered expression of cell cycle regulatory genes in cancer. Anticancer Drugs 8(10):903–910PubMedCrossRef
45.
go back to reference Khaldoyanidi S, Sikora L, Orlovskaya I, Matrosova V, Kozlov V, Sriramarao P (2001) Correlation between nicotine-induced inhibition of hematopoiesis and decreased CD44 expression on bone marrow stromal cells. Blood 98(2):303–312PubMedCrossRef Khaldoyanidi S, Sikora L, Orlovskaya I, Matrosova V, Kozlov V, Sriramarao P (2001) Correlation between nicotine-induced inhibition of hematopoiesis and decreased CD44 expression on bone marrow stromal cells. Blood 98(2):303–312PubMedCrossRef
46.
go back to reference Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H, Herrlich P (1998) Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 102(5):1024–1034PubMedCrossRef Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H, Herrlich P (1998) Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 102(5):1024–1034PubMedCrossRef
47.
go back to reference Reese JS, Koc ON, Gerson SL (1999) Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction. J Hematother Stem Cell Res 8(5):515–523PubMedCrossRef Reese JS, Koc ON, Gerson SL (1999) Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction. J Hematother Stem Cell Res 8(5):515–523PubMedCrossRef
48.
go back to reference Szumilas P, Barcew K, Baskiewicz-Masiuk M, Wiszniewska B, Ratajczak MZ, Machalinski B (2005) Effect of stem cell mobilization with cyclophosphamide plus granulocyte colony-stimulating factor on morphology of haematopoietic organs in mice. Cell Prolif 38(1):47–61PubMedCrossRef Szumilas P, Barcew K, Baskiewicz-Masiuk M, Wiszniewska B, Ratajczak MZ, Machalinski B (2005) Effect of stem cell mobilization with cyclophosphamide plus granulocyte colony-stimulating factor on morphology of haematopoietic organs in mice. Cell Prolif 38(1):47–61PubMedCrossRef
49.
go back to reference Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, and Devine S (2003) Stem cell mobilization. Hematology Am Soc Hematol Educ Program, pp 419–437. Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, and Devine S (2003) Stem cell mobilization. Hematology Am Soc Hematol Educ Program, pp 419–437.
50.
51.
go back to reference Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106(11):1331–1339PubMedCrossRef Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106(11):1331–1339PubMedCrossRef
52.
go back to reference Zhao Y, Zhan Y, Burke KA, Anderson WF (2005) Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp Hematol 33(4):428–434PubMedCrossRef Zhao Y, Zhan Y, Burke KA, Anderson WF (2005) Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp Hematol 33(4):428–434PubMedCrossRef
53.
go back to reference Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981PubMedCrossRef Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981PubMedCrossRef
54.
go back to reference Collis SJ, Neutzel S, Thompson TL, Swartz MJ, Dillehay LE, Collector MI, Sharkis SJ, DeWeese TL (2004) Hematopoietic progenitor stem cell homing in mice lethally irradiated with ionizing radiation at differing dose rates. Radiat Res 162(1):48–55PubMedCrossRef Collis SJ, Neutzel S, Thompson TL, Swartz MJ, Dillehay LE, Collector MI, Sharkis SJ, DeWeese TL (2004) Hematopoietic progenitor stem cell homing in mice lethally irradiated with ionizing radiation at differing dose rates. Radiat Res 162(1):48–55PubMedCrossRef
55.
go back to reference Hendrikx PJ, Martens CM, Hagenbeek A, Keij JF, Visser JW (1996) Homing of fluorescently labeled murine hematopoietic stem cells. Exp Hematol 24(2):129–140PubMed Hendrikx PJ, Martens CM, Hagenbeek A, Keij JF, Visser JW (1996) Homing of fluorescently labeled murine hematopoietic stem cells. Exp Hematol 24(2):129–140PubMed
56.
go back to reference Bacigalupo A (2004) Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 17(3):387–399PubMed Bacigalupo A (2004) Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 17(3):387–399PubMed
57.
go back to reference Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344PubMedCrossRef Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344PubMedCrossRef
58.
go back to reference de Wynter E, Ploemacher RE (2001) Assays for the assessment of human hematopoietic stem cells. J Biol Regul Homeost Agents 15(1):23–27PubMed de Wynter E, Ploemacher RE (2001) Assays for the assessment of human hematopoietic stem cells. J Biol Regul Homeost Agents 15(1):23–27PubMed
59.
go back to reference Riley RS, Idowu M, Chesney A, Zhao S, McCarty J, Lamb LS, Ben-Ezra JM (2005) Hematologic aspects of myeloablative therapy and bone marrow transplantation. J Clin Lab Anal 19(2):47–79PubMedCrossRef Riley RS, Idowu M, Chesney A, Zhao S, McCarty J, Lamb LS, Ben-Ezra JM (2005) Hematologic aspects of myeloablative therapy and bone marrow transplantation. J Clin Lab Anal 19(2):47–79PubMedCrossRef
60.
go back to reference Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425PubMedCrossRef Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425PubMedCrossRef
Metadata
Title
Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells
Authors
Kevin Kemp
Ruth Morse
Kelly Sanders
Jill Hows
Craig Donaldson
Publication date
01-07-2011
Publisher
Springer-Verlag
Published in
Annals of Hematology / Issue 7/2011
Print ISSN: 0939-5555
Electronic ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-010-1141-8

Other articles of this Issue 7/2011

Annals of Hematology 7/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.