Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 2/2010

01-04-2010 | Laboratory Investigation

Evaluation of Magnetic Resonance Imaging-Compatible Needles and Interactive Sequences for Musculoskeletal Interventions Using an Open High-Field Magnetic Resonance Imaging Scanner

Authors: Uta Wonneberger, Bernhard Schnackenburg, Florian Streitparth, Thula Walter, Jens Rump, Ulf K. M. Teichgräber

Published in: CardioVascular and Interventional Radiology | Issue 2/2010

Login to get access

Abstract

In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0° to 90°) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring was assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45° to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNRMuscle/Needle >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.
Literature
1.
go back to reference Schulz T, Puccini S, Schneider JP Kahn T (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14(12):2212–2227CrossRefPubMed Schulz T, Puccini S, Schneider JP Kahn T (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14(12):2212–2227CrossRefPubMed
2.
go back to reference Smith KA, Carrino J (2008) MRI-guided interventions of the musculoskeletal system. J Magn Reson Imaging 27(2):339–346CrossRefPubMed Smith KA, Carrino J (2008) MRI-guided interventions of the musculoskeletal system. J Magn Reson Imaging 27(2):339–346CrossRefPubMed
3.
go back to reference Fritz J, Clasen S, Boss A et al (2008) Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 18(7):1513–1518CrossRefPubMed Fritz J, Clasen S, Boss A et al (2008) Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 18(7):1513–1518CrossRefPubMed
4.
go back to reference de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT (2007) MR thermometry for monitoring tumor ablation. Eur Radiol 17(9):2401–2410CrossRefPubMed de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT (2007) MR thermometry for monitoring tumor ablation. Eur Radiol 17(9):2401–2410CrossRefPubMed
5.
go back to reference Streitparth F, Walter T, Wonneberger U (2009) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol (in press) Streitparth F, Walter T, Wonneberger U (2009) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol (in press)
6.
go back to reference Fritz J, Pereira PL (2007) MR-guided pain therapy: principles and clinical applications. Rofo 179(9):914–924PubMed Fritz J, Pereira PL (2007) MR-guided pain therapy: principles and clinical applications. Rofo 179(9):914–924PubMed
7.
go back to reference Steiner P, Zweifel K, Botnar R et al (1998) MR guidance of laser disc decompression: preliminary in vivo experience. Eur Radiol 8(4):592–597CrossRefPubMed Steiner P, Zweifel K, Botnar R et al (1998) MR guidance of laser disc decompression: preliminary in vivo experience. Eur Radiol 8(4):592–597CrossRefPubMed
8.
go back to reference Streitparth F, Gebauer B, Melcher I et al (2009) MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc Intervent Radiol 32(2):320–325CrossRefPubMed Streitparth F, Gebauer B, Melcher I et al (2009) MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc Intervent Radiol 32(2):320–325CrossRefPubMed
9.
go back to reference American Society for Testing and Materials (ASTM) (2001) Designation: F 2119-01—standard test method for evaluation of MR image artifacts from passive implants. ATSM, West Conshohocken American Society for Testing and Materials (ASTM) (2001) Designation: F 2119-01—standard test method for evaluation of MR image artifacts from passive implants. ATSM, West Conshohocken
10.
go back to reference Frahm C, Gehl HB, Melchert UH, Weiss HD (1996) Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla. Cardiovasc Intervent Radiol 19(5):335–340CrossRefPubMed Frahm C, Gehl HB, Melchert UH, Weiss HD (1996) Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla. Cardiovasc Intervent Radiol 19(5):335–340CrossRefPubMed
11.
go back to reference DiMaio SP, Kacher DF, Ellis RE et al (2006) Needle artifact localization in 3T MR images. Stud Health Technol Inform 119:120–125PubMed DiMaio SP, Kacher DF, Ellis RE et al (2006) Needle artifact localization in 3T MR images. Stud Health Technol Inform 119:120–125PubMed
12.
go back to reference Altman DG, Bland JM (1996) Comparing several groups using analysis of variance. Br Med J (Clin Res Ed) 312(7044):1472–1473 Altman DG, Bland JM (1996) Comparing several groups using analysis of variance. Br Med J (Clin Res Ed) 312(7044):1472–1473
13.
go back to reference Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533CrossRefPubMed Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533CrossRefPubMed
14.
go back to reference Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36(4):646–651CrossRefPubMed Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36(4):646–651CrossRefPubMed
15.
go back to reference Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR 166(6):1337–1345PubMed Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR 166(6):1337–1345PubMed
16.
go back to reference Liu H, Hall WA, Martin AJ, Truwit CL (2001) Biopsy needle tip artifact in MR-guided neurosurgery. J Magn Reson Imaging 13(1):16–22CrossRefPubMed Liu H, Hall WA, Martin AJ, Truwit CL (2001) Biopsy needle tip artifact in MR-guided neurosurgery. J Magn Reson Imaging 13(1):16–22CrossRefPubMed
17.
go back to reference Liu H, Martin AJ, Truwit CL (1998) Interventional MRI at high-field (1.5 T): needle artifacts. J Magn Reson Imaging 8(1):214–219CrossRefPubMed Liu H, Martin AJ, Truwit CL (1998) Interventional MRI at high-field (1.5 T): needle artifacts. J Magn Reson Imaging 8(1):214–219CrossRefPubMed
18.
go back to reference Ludeke KM, Roschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3(4):329–343CrossRefPubMed Ludeke KM, Roschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3(4):329–343CrossRefPubMed
19.
go back to reference Muller-Bierl B, Graf H, Lauer U, Steidle G, Schick F (2004) Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 31(3):579–587CrossRefPubMed Muller-Bierl B, Graf H, Lauer U, Steidle G, Schick F (2004) Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 31(3):579–587CrossRefPubMed
20.
go back to reference Muller-Bierl B, Graf H, Steidle G, Schick F (2005) Compensation of magnetic field distortions from paramagnetic instruments by added diamagnetic material: measurements and numerical simulations. Med Phys 32(1):76–84CrossRefPubMed Muller-Bierl B, Graf H, Steidle G, Schick F (2005) Compensation of magnetic field distortions from paramagnetic instruments by added diamagnetic material: measurements and numerical simulations. Med Phys 32(1):76–84CrossRefPubMed
21.
go back to reference Reichenbach JR, Wurdinger S, Pfleiderer SO, Kaiser WA (2000) Comparison of artifacts produced from carbon fiber and titanium alloy needles at 1.5 T MR imaging. J Magn Reson Imaging 11(1):69–74CrossRefPubMed Reichenbach JR, Wurdinger S, Pfleiderer SO, Kaiser WA (2000) Comparison of artifacts produced from carbon fiber and titanium alloy needles at 1.5 T MR imaging. J Magn Reson Imaging 11(1):69–74CrossRefPubMed
22.
go back to reference Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14(6):409–413CrossRefPubMed Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14(6):409–413CrossRefPubMed
23.
go back to reference Chopra SS, Rump J, Schmidt SC et al (2009) Imaging sequences for intraoperative MR-guided laparoscopic liver resection in 1.0-T high field open MRI. Eur Radiol. doi:10.1007/s00330-009-1393-7 Chopra SS, Rump J, Schmidt SC et al (2009) Imaging sequences for intraoperative MR-guided laparoscopic liver resection in 1.0-T high field open MRI. Eur Radiol. doi:10.​1007/​s00330-009-1393-7
24.
go back to reference Ishiwata Y, Takada H, Gondo G, Osano S, Hashimoto T, Yamamoto I (2007) Magnetic resonance-guided percutaneous laser disk decompression for lumbar disk herniation—relationship between clinical results and location of needle tip. Surg Neurol 68(2):159–163CrossRefPubMed Ishiwata Y, Takada H, Gondo G, Osano S, Hashimoto T, Yamamoto I (2007) Magnetic resonance-guided percutaneous laser disk decompression for lumbar disk herniation—relationship between clinical results and location of needle tip. Surg Neurol 68(2):159–163CrossRefPubMed
25.
go back to reference Schoenenberger AW, Steiner P, Debatin JF et al (1997) Real-time monitoring of laser diskectomies with a superconducting, open-configuration MR system. AJR 169(3):863–867PubMed Schoenenberger AW, Steiner P, Debatin JF et al (1997) Real-time monitoring of laser diskectomies with a superconducting, open-configuration MR system. AJR 169(3):863–867PubMed
26.
go back to reference Steiner P, Schoenenberger AW, Erhart P, Penner E, von Schulthess GK, Debatin JF (1997) Imaging temperature changes in an interventional 0.5 T magnet: in-vitro results. Lasers Surg Med 21(5):464–473CrossRefPubMed Steiner P, Schoenenberger AW, Erhart P, Penner E, von Schulthess GK, Debatin JF (1997) Imaging temperature changes in an interventional 0.5 T magnet: in-vitro results. Lasers Surg Med 21(5):464–473CrossRefPubMed
27.
go back to reference Wlodarczyk W, Hentschel M, Wust P et al (1999) Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 44(2):607–624CrossRefPubMed Wlodarczyk W, Hentschel M, Wust P et al (1999) Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 44(2):607–624CrossRefPubMed
Metadata
Title
Evaluation of Magnetic Resonance Imaging-Compatible Needles and Interactive Sequences for Musculoskeletal Interventions Using an Open High-Field Magnetic Resonance Imaging Scanner
Authors
Uta Wonneberger
Bernhard Schnackenburg
Florian Streitparth
Thula Walter
Jens Rump
Ulf K. M. Teichgräber
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
CardioVascular and Interventional Radiology / Issue 2/2010
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-009-9676-6

Other articles of this Issue 2/2010

CardioVascular and Interventional Radiology 2/2010 Go to the issue

Editor's Note

Editors’ Address