Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 10/2019

01-10-2019 | Kidney Cancer | Original Article

Peripheral changes in immune cell populations and soluble mediators after anti-PD-1 therapy in non-small cell lung cancer and renal cell carcinoma patients

Authors: Estefanía Paula Juliá, Pablo Mandó, Manglio Miguel Rizzo, Gerardo Rubén Cueto, Florencia Tsou, Romina Luca, Carmen Pupareli, Alicia Inés Bravo, Walter Astorino, José Mordoh, Claudio Martín, Estrella Mariel Levy

Published in: Cancer Immunology, Immunotherapy | Issue 10/2019

Login to get access

Abstract

Patients with non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC) have shown benefit from anti-PD-1 therapies. However, not all patients experience tumor shrinkage, durable responses or prolonged survival, demonstrating the need to find response markers. In blood samples from NSCLC and RCC patients obtained before and after anti-PD-1 treatment, we studied leukocytes by complete blood cell count, lymphocyte subsets using flow cytometry and plasma concentration of nine soluble mediators, in order to find predictive biomarkers of response and to study changes produced after anti-PD-1 therapy. In baseline samples, discriminant analysis revealed a combination of four variables that helped differentiate stable disease-response (SD-R) from progressive disease (PD) patients: augmented frequency of central memory CD4+ T cells and leukocyte count was associated with response while increased percentage of PD-L1+ natural killer cells and naïve CD4+ T cells was associated with lack of response. After therapy, differential changes between responders and non-responders were found in leukocytes, T cells and TIM-3+ T cells. Patients with progressive disease showed an increase in the frequency of TIM-3 expressing CD4+ and CD8+ T cells, whereas SD-R patients showed a decrease in these subsets. Our findings indicate that a combination of immune variables from peripheral blood (PB) could be useful to distinguish response groups in NSCLC and RCC patients treated with anti-PD-1 therapy. Frequency of TIM-3+ T cells showed differential changes after treatment in PD vs SD-R patients, suggesting that it may be an interesting marker for monitoring progression during therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135PubMedPubMedCentralCrossRef Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135PubMedPubMedCentralCrossRef
2.
go back to reference Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867PubMedPubMedCentralCrossRef Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867PubMedPubMedCentralCrossRef
3.
go back to reference Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF et al (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17:1558–1568PubMedPubMedCentralCrossRef Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF et al (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17:1558–1568PubMedPubMedCentralCrossRef
4.
go back to reference Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813PubMedPubMedCentralCrossRef Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813PubMedPubMedCentralCrossRef
5.
go back to reference Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330CrossRefPubMed Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330CrossRefPubMed
6.
go back to reference Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144PubMedPubMedCentralCrossRef Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144PubMedPubMedCentralCrossRef
7.
go back to reference Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD et al (2013) Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -Naive Melanoma. J Clin Oncol 31:4311–4318PubMedPubMedCentralCrossRef Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD et al (2013) Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -Naive Melanoma. J Clin Oncol 31:4311–4318PubMedPubMedCentralCrossRef
8.
go back to reference Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384PubMedCrossRef Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384PubMedCrossRef
9.
go back to reference Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16:908–918PubMedCrossRefPubMedCentral Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16:908–918PubMedCrossRefPubMedCentral
10.
go back to reference Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedPubMedCentralCrossRef Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedPubMedCentralCrossRef
11.
go back to reference Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437PubMedCrossRef Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437PubMedCrossRef
12.
go back to reference McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O et al (2016) Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase ia study. J Clin Oncol 34:833–842PubMedCrossRef McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O et al (2016) Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase ia study. J Clin Oncol 34:833–842PubMedCrossRef
13.
go back to reference Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567PubMedPubMedCentralCrossRef Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567PubMedPubMedCentralCrossRef
14.
go back to reference Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028PubMedCrossRef Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028PubMedCrossRef
15.
go back to reference Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16:257–265PubMedPubMedCentralCrossRef Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16:257–265PubMedPubMedCentralCrossRef
16.
go back to reference Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550PubMedCrossRef Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550PubMedCrossRef
17.
go back to reference Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846PubMedCrossRef Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846PubMedCrossRef
19.
go back to reference Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074PubMedPubMedCentralCrossRef Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074PubMedPubMedCentralCrossRef
20.
go back to reference Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287PubMedPubMedCentralCrossRef Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287PubMedPubMedCentralCrossRef
21.
go back to reference Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada MRC (2017) InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada MRC (2017) InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
22.
go back to reference Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRef Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRef
23.
go back to reference Rohart F, Gautier B, Singh A, Lê Cao KA (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752PubMedPubMedCentralCrossRef Rohart F, Gautier B, Singh A, Lê Cao KA (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752PubMedPubMedCentralCrossRef
24.
go back to reference Trivittayasil V, Tsuta M, Kasai S, Matsuo Y, Sekiyama Y, Shoji T et al (2018) Classification of 1-methylcyclopropene treated apples by fluorescence fingerprint using partial least squares discriminant analysis with stepwise selectivity ratio variable selection method. Chemom Intell Lab Syst. 175:30–36CrossRef Trivittayasil V, Tsuta M, Kasai S, Matsuo Y, Sekiyama Y, Shoji T et al (2018) Classification of 1-methylcyclopropene treated apples by fluorescence fingerprint using partial least squares discriminant analysis with stepwise selectivity ratio variable selection method. Chemom Intell Lab Syst. 175:30–36CrossRef
26.
go back to reference Callea M, Albiges L, Gupta M, Cheng S-C, Genega EM, Fay AP et al (2015) Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol Res 3:1158–1164PubMedPubMedCentralCrossRef Callea M, Albiges L, Gupta M, Cheng S-C, Genega EM, Fay AP et al (2015) Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol Res 3:1158–1164PubMedPubMedCentralCrossRef
27.
go back to reference Jilaveanu LB, Shuch B, Zito CR, Parisi F, Barr M, Kluger Y et al (2014) PD-L1 expression in clear cell renal cell carcinoma: an analysis of nephrectomy and sites of metastases. J Cancer. 5:166–172PubMedPubMedCentralCrossRef Jilaveanu LB, Shuch B, Zito CR, Parisi F, Barr M, Kluger Y et al (2014) PD-L1 expression in clear cell renal cell carcinoma: an analysis of nephrectomy and sites of metastases. J Cancer. 5:166–172PubMedPubMedCentralCrossRef
28.
go back to reference Munari E, Zamboni G, Marconi M, Sommaggio M, Brunelli M, Martignoni G et al (2017) PD-L1 expression heterogeneity in non-small cell lung cancer: evaluation of small biopsies reliability. Oncotarget. 8:90123–90131PubMedPubMedCentralCrossRef Munari E, Zamboni G, Marconi M, Sommaggio M, Brunelli M, Martignoni G et al (2017) PD-L1 expression heterogeneity in non-small cell lung cancer: evaluation of small biopsies reliability. Oncotarget. 8:90123–90131PubMedPubMedCentralCrossRef
29.
go back to reference Casadevall D, Clavé S, Taus Á, Hardy-Werbin M, Rocha P, Lorenzo M et al (2017) Heterogeneity of tumor and immune cell PD-L1 expression and lymphocyte counts in surgical NSCLC samples. Clin Lung Cancer 18(682–691):e5 Casadevall D, Clavé S, Taus Á, Hardy-Werbin M, Rocha P, Lorenzo M et al (2017) Heterogeneity of tumor and immune cell PD-L1 expression and lymphocyte counts in surgical NSCLC samples. Clin Lung Cancer 18(682–691):e5
30.
go back to reference Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM et al (2018) High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 24:144–153PubMedCrossRef Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM et al (2018) High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 24:144–153PubMedCrossRef
31.
go back to reference Manjarrez-Orduño N, Menard LC, Kansal S, Fischer P, Kakrecha B, Jiang C et al (2018) Circulating T cell subpopulations correlate with immune responses at the tumor site and clinical response to PD1 inhibition in non-small cell lung cancer. Front Immunol. 9:1–9CrossRef Manjarrez-Orduño N, Menard LC, Kansal S, Fischer P, Kakrecha B, Jiang C et al (2018) Circulating T cell subpopulations correlate with immune responses at the tumor site and clinical response to PD1 inhibition in non-small cell lung cancer. Front Immunol. 9:1–9CrossRef
32.
go back to reference Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–1086CrossRefPubMed Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–1086CrossRefPubMed
33.
go back to reference O’Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ (2017) Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 52:71–81PubMedCrossRef O’Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ (2017) Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 52:71–81PubMedCrossRef
35.
go back to reference Ameratunga M, Chénard-Poirier M, Moreno Candilejo I, Pedregal M, Lui A, Dolling D et al (2018) Neutrophil-lymphocyte ratio kinetics in patients with advanced solid tumours on phase I trials of PD-1/PD-L1 inhibitors. Eur J Cancer 89:56–63PubMedCrossRef Ameratunga M, Chénard-Poirier M, Moreno Candilejo I, Pedregal M, Lui A, Dolling D et al (2018) Neutrophil-lymphocyte ratio kinetics in patients with advanced solid tumours on phase I trials of PD-1/PD-L1 inhibitors. Eur J Cancer 89:56–63PubMedCrossRef
36.
go back to reference Sacdalan DB, Lucero JA, Sacdalan D (2018) Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther. 11:955–965PubMedPubMedCentralCrossRef Sacdalan DB, Lucero JA, Sacdalan D (2018) Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther. 11:955–965PubMedPubMedCentralCrossRef
37.
go back to reference Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K et al (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22:5487–5496PubMedPubMedCentralCrossRef Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K et al (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22:5487–5496PubMedPubMedCentralCrossRef
38.
go back to reference Subrahmanyam PB, Dong Z, Gusenleitner D, Giobbie-Hurder A, Severgnini M, Zhou J et al (2018) Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J Immunother Cancer. 6:18PubMedPubMedCentralCrossRef Subrahmanyam PB, Dong Z, Gusenleitner D, Giobbie-Hurder A, Severgnini M, Zhou J et al (2018) Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J Immunother Cancer. 6:18PubMedPubMedCentralCrossRef
39.
go back to reference Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME et al (2017) Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol 28:1988–1995PubMedPubMedCentralCrossRef Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME et al (2017) Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol 28:1988–1995PubMedPubMedCentralCrossRef
40.
go back to reference Thommen DS, Schreiner J, Muller P, Herzig P, Roller A, Belousov A et al (2015) Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res 3:1344–1355PubMedCrossRef Thommen DS, Schreiner J, Muller P, Herzig P, Roller A, Belousov A et al (2015) Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res 3:1344–1355PubMedCrossRef
41.
go back to reference Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:10501PubMedPubMedCentralCrossRef Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:10501PubMedPubMedCentralCrossRef
42.
go back to reference Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004PubMedPubMedCentralCrossRef Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004PubMedPubMedCentralCrossRef
43.
go back to reference Kato R, Yamasaki M, Urakawa S, Nishida K, Makino T, Morimoto-Okazawa A et al (2018) Increased Tim-3 + T cells in PBMCs during nivolumab therapy correlate with responses and prognosis of advanced esophageal squamous cell carcinoma patients. Cancer Immunol Immunother 67:1673–1683PubMedCrossRef Kato R, Yamasaki M, Urakawa S, Nishida K, Makino T, Morimoto-Okazawa A et al (2018) Increased Tim-3 + T cells in PBMCs during nivolumab therapy correlate with responses and prognosis of advanced esophageal squamous cell carcinoma patients. Cancer Immunol Immunother 67:1673–1683PubMedCrossRef
44.
go back to reference Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194PubMedPubMedCentralCrossRef Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194PubMedPubMedCentralCrossRef
45.
go back to reference Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-—mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551PubMedCrossRef Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-—mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551PubMedCrossRef
46.
go back to reference Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8 + T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117:4501–4510PubMedPubMedCentralCrossRef Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8 + T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117:4501–4510PubMedPubMedCentralCrossRef
Metadata
Title
Peripheral changes in immune cell populations and soluble mediators after anti-PD-1 therapy in non-small cell lung cancer and renal cell carcinoma patients
Authors
Estefanía Paula Juliá
Pablo Mandó
Manglio Miguel Rizzo
Gerardo Rubén Cueto
Florencia Tsou
Romina Luca
Carmen Pupareli
Alicia Inés Bravo
Walter Astorino
José Mordoh
Claudio Martín
Estrella Mariel Levy
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 10/2019
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-019-02391-z

Other articles of this Issue 10/2019

Cancer Immunology, Immunotherapy 10/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine