Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 2/2015

01-02-2015 | Original Article

Dynamics of the IL-33/ST2 network in the progression of human colorectal adenoma to sporadic colorectal cancer

Authors: Guanglin Cui, Haili Qi, Mona D. Gundersen, Hang Yang, Ingrid Christiansen, Sveinung W. Sørbye, Rasmus Goll, Jon Florholmen

Published in: Cancer Immunology, Immunotherapy | Issue 2/2015

Login to get access

Abstract

Most sporadic colorectal cancers (CRCs) develop from preformed adenomas. Cytokines are involved in the transition from adenoma to CRC. Interleukin-33 (IL-33) is a newly discovered proinflammatory cytokine belonging to the IL-1 cytokine family and involved in the development of chronic inflammation and cancer. The aim of this study was to evaluate the dynamics of the IL-33/ST2 axis during the sequence of progression from normal colorectum to adenoma to carcinoma and to investigate the association of IL-33 and ST2 expression with clinicopathological parameters and prognosis. The results demonstrated that the levels of IL-33 and ST2 in adenomas (n = 50), determined by real-time PCR, were significantly higher than those of normal controls (n = 30); the levels of both IL-33/ST mRNA in CRCs (n = 50) were higher than in normal controls but lower than in adenomas. Further analysis revealed that the expression level of ST2 in CRCs was associated with tumor/node/metastasis (TNM) stage. The log-rank test showed that neither the IL-33 nor the ST2 expression level was correlated with overall survival in patients with CRC. The increased expression of IL-33/ST2 in adenomas and CRC tissues was confirmed by immunohistochemistry and was observed in both the tumor stromal cells and adenomatous/cancerous cells. Notably, increased densities of IL-33-positive and ST2-positive microvessels were found in the stroma of adenomas and CRCs. In conclusion, increased expression of the IL-33/ST2 axis along the colorectal adenoma–carcinoma sequence might be involved in the neoplastic transformation via the participation of this axis in the regulation of angiogenesis.
Literature
1.
2.
go back to reference Leslie A, Carey FA, Pratt NR, Steele RJ (2002) The colorectal adenoma-carcinoma sequence. Br J Surg 89:845–860PubMedCrossRef Leslie A, Carey FA, Pratt NR, Steele RJ (2002) The colorectal adenoma-carcinoma sequence. Br J Surg 89:845–860PubMedCrossRef
4.
5.
go back to reference Cacev T, Radosevic S, Krizanac S, Kapitanovic S (2008) Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis 29:1572–1580PubMedCrossRef Cacev T, Radosevic S, Krizanac S, Kapitanovic S (2008) Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis 29:1572–1580PubMedCrossRef
6.
7.
go back to reference Fantini MC, Pallone F (2008) Cytokines: from gut inflammation to colorectal cancer. Curr Drug Targets 9:375–380PubMedCrossRef Fantini MC, Pallone F (2008) Cytokines: from gut inflammation to colorectal cancer. Curr Drug Targets 9:375–380PubMedCrossRef
8.
go back to reference Choi JW, Liu H, Shin DH, Yu GI, Hwang JS, Kim ES, Yun JW (2013) Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients. Proteomics 13:2361–2374PubMedCrossRef Choi JW, Liu H, Shin DH, Yu GI, Hwang JS, Kim ES, Yun JW (2013) Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients. Proteomics 13:2361–2374PubMedCrossRef
9.
go back to reference Chung YC, Chang YF (2003) Significance of inflammatory cytokines in the progression of colorectal cancer. Hepatogastroenterology 50:1910–1913PubMed Chung YC, Chang YF (2003) Significance of inflammatory cytokines in the progression of colorectal cancer. Hepatogastroenterology 50:1910–1913PubMed
10.
go back to reference Kang M, Edmundson P, Araujo-Perez F, McCoy AN, Galanko J, Keku TO (2013) Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas. BMC Cancer 13:91PubMedCentralPubMedCrossRef Kang M, Edmundson P, Araujo-Perez F, McCoy AN, Galanko J, Keku TO (2013) Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas. BMC Cancer 13:91PubMedCentralPubMedCrossRef
11.
go back to reference Kim S, Keku TO, Martin C, Galanko J, Woosley JT, Schroeder JC, Satia JA, Halabi S, Sandler RS (2008) Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res 68:323–328PubMedCentralPubMedCrossRef Kim S, Keku TO, Martin C, Galanko J, Woosley JT, Schroeder JC, Satia JA, Halabi S, Sandler RS (2008) Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res 68:323–328PubMedCentralPubMedCrossRef
12.
go back to reference Krzystek-Korpacka M, Diakowska D, Kapturkiewicz B, Bebenek M, Gamian A (2013) Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance. Cancer Lett 337:107–114PubMedCrossRef Krzystek-Korpacka M, Diakowska D, Kapturkiewicz B, Bebenek M, Gamian A (2013) Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance. Cancer Lett 337:107–114PubMedCrossRef
13.
go back to reference Cui G, Goll R, Olsen T, Steigen SE, Husebekk A, Vonen B, Florholmen J (2007) Reduced expression of microenvironmental Th1 cytokines accompanies adenomas-carcinomas sequence of colorectum. Cancer Immunol Immunother 56:985–995PubMedCrossRef Cui G, Goll R, Olsen T, Steigen SE, Husebekk A, Vonen B, Florholmen J (2007) Reduced expression of microenvironmental Th1 cytokines accompanies adenomas-carcinomas sequence of colorectum. Cancer Immunol Immunother 56:985–995PubMedCrossRef
14.
go back to reference Cui G, Yuan A, Goll R, Vonen B, Florholmen J (2009) Dynamic changes of interleukin-8 network along the colorectal adenoma-carcinoma sequence. Cancer Immunol Immunother 58:1897–1905PubMedCrossRef Cui G, Yuan A, Goll R, Vonen B, Florholmen J (2009) Dynamic changes of interleukin-8 network along the colorectal adenoma-carcinoma sequence. Cancer Immunol Immunother 58:1897–1905PubMedCrossRef
15.
go back to reference Oliveira Frick V, Rubie C, Ghadjar P, Faust SK, Wagner M, Graber S, Schilling MK (2011) Changes in CXCL12/CXCR4-chemokine expression during onset of colorectal malignancies. Tumour Biol 32:189–196PubMedCrossRef Oliveira Frick V, Rubie C, Ghadjar P, Faust SK, Wagner M, Graber S, Schilling MK (2011) Changes in CXCL12/CXCR4-chemokine expression during onset of colorectal malignancies. Tumour Biol 32:189–196PubMedCrossRef
16.
go back to reference Pellegrini P, Berghella AM, Contasta I, Del Beato T, Adorno D (2006) The study of a patient’s immune system may prove to be a useful noninvasive tool for stage classification in colon cancer. Cancer Biother Radiopharm 21:443–467PubMedCrossRef Pellegrini P, Berghella AM, Contasta I, Del Beato T, Adorno D (2006) The study of a patient’s immune system may prove to be a useful noninvasive tool for stage classification in colon cancer. Cancer Biother Radiopharm 21:443–467PubMedCrossRef
18.
go back to reference Beltran CJ, Nunez LE, Diaz-Jimenez D, Farfan N, Candia E, Heine C, Lopez F, Gonzalez MJ, Quera R, Hermoso MA (2010) Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis 16:1097–1107PubMedCrossRef Beltran CJ, Nunez LE, Diaz-Jimenez D, Farfan N, Candia E, Heine C, Lopez F, Gonzalez MJ, Quera R, Hermoso MA (2010) Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis 16:1097–1107PubMedCrossRef
19.
go back to reference Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N, Arsenijevic N, Lukic ML (2012) IL-33/ST2 axis in inflammation and immunopathology. Immunol Res 52:89–99PubMedCrossRef Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N, Arsenijevic N, Lukic ML (2012) IL-33/ST2 axis in inflammation and immunopathology. Immunol Res 52:89–99PubMedCrossRef
20.
go back to reference Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T, Saito Y, Fujiyama Y, Andoh A (2010) Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol 45:999–1007PubMedCrossRef Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T, Saito Y, Fujiyama Y, Andoh A (2010) Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol 45:999–1007PubMedCrossRef
21.
go back to reference Jovanovic IP, Pejnovic NN, Radosavljevic GD, Arsenijevic NN, Lukic ML (2012) IL-33/ST2 axis in innate and acquired immunity to tumors. Oncoimmunology 1:229–231PubMedCentralPubMedCrossRef Jovanovic IP, Pejnovic NN, Radosavljevic GD, Arsenijevic NN, Lukic ML (2012) IL-33/ST2 axis in innate and acquired immunity to tumors. Oncoimmunology 1:229–231PubMedCentralPubMedCrossRef
22.
go back to reference Eiwegger T, Akdis CA (2011) IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. Eur J Immunol 41:1535–1538PubMedCrossRef Eiwegger T, Akdis CA (2011) IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. Eur J Immunol 41:1535–1538PubMedCrossRef
23.
go back to reference Schmieder A, Multhoff G, Radons J (2012) Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine 60:514–521PubMedCrossRef Schmieder A, Multhoff G, Radons J (2012) Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine 60:514–521PubMedCrossRef
24.
go back to reference Chen SF, Nieh S, Jao SW, Wu MZ, Liu CL, Chang YC, Lin YS (2013) The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol 231:180–189PubMedCrossRef Chen SF, Nieh S, Jao SW, Wu MZ, Liu CL, Chang YC, Lin YS (2013) The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol 231:180–189PubMedCrossRef
25.
go back to reference Zhang P, Liu XK, Chu Z, Ye JC, Li KL, Zhuang WL, Yang DJ, Jiang YF (2012) Detection of interleukin-33 in serum and carcinoma tissue from patients with hepatocellular carcinoma and its clinical implications. J Int Med Res 40:1654–1661PubMedCrossRef Zhang P, Liu XK, Chu Z, Ye JC, Li KL, Zhuang WL, Yang DJ, Jiang YF (2012) Detection of interleukin-33 in serum and carcinoma tissue from patients with hepatocellular carcinoma and its clinical implications. J Int Med Res 40:1654–1661PubMedCrossRef
26.
go back to reference Hu LA, Fu Y, Zhang DN, Zhang J (2013) Serum IL-33 as a diagnostic and prognostic marker in non- small cell lung cancer. Asian Pac J Cancer Prev 14:2563–2566PubMedCrossRef Hu LA, Fu Y, Zhang DN, Zhang J (2013) Serum IL-33 as a diagnostic and prognostic marker in non- small cell lung cancer. Asian Pac J Cancer Prev 14:2563–2566PubMedCrossRef
27.
go back to reference Sun P, Ben Q, Tu S, Dong W, Qi X, Wu Y (2011) Serum interleukin-33 levels in patients with gastric cancer. Dig Dis Sci 56:3596–3601PubMedCrossRef Sun P, Ben Q, Tu S, Dong W, Qi X, Wu Y (2011) Serum interleukin-33 levels in patients with gastric cancer. Dig Dis Sci 56:3596–3601PubMedCrossRef
28.
go back to reference Musolino C, Allegra A, Profita M, Alonci A, Saitta S, Russo S, Bonanno A, Innao V, Gangemi S (2013) Reduced IL-33 plasma levels in multiple myeloma patients are associated with more advanced stage of disease. Br J Heamatol 160:709–710CrossRef Musolino C, Allegra A, Profita M, Alonci A, Saitta S, Russo S, Bonanno A, Innao V, Gangemi S (2013) Reduced IL-33 plasma levels in multiple myeloma patients are associated with more advanced stage of disease. Br J Heamatol 160:709–710CrossRef
29.
go back to reference Seidelin JB, Rogler G, Nielsen OH (2011) A role for interleukin-33 in T(H)2-polarized intestinal inflammation? Mucosal Immunol 4:496–502PubMedCrossRef Seidelin JB, Rogler G, Nielsen OH (2011) A role for interleukin-33 in T(H)2-polarized intestinal inflammation? Mucosal Immunol 4:496–502PubMedCrossRef
30.
go back to reference Cui G, Olsen T, Christiansen I, Vonen B, Florholmen J, Goll R (2006) Improvement of real-time polymerase chain reaction for quantifying TNF-alpha mRNA expression in inflamed colorectal mucosa: an approach to optimize procedures for clinical use. Scand J Clin Lab Inv 66:249–259CrossRef Cui G, Olsen T, Christiansen I, Vonen B, Florholmen J, Goll R (2006) Improvement of real-time polymerase chain reaction for quantifying TNF-alpha mRNA expression in inflamed colorectal mucosa: an approach to optimize procedures for clinical use. Scand J Clin Lab Inv 66:249–259CrossRef
31.
go back to reference Cui G, Koh TJ, Chen D, Zhao CM, Takaishi S, Dockray GJ, Varro A, Rogers AB, Fox JG, Wang TC (2004) Overexpression of glycine-extended gastrin inhibits parietal cell loss and atrophy in the mouse stomach. Cancer Res 64:8160–8166PubMedCrossRef Cui G, Koh TJ, Chen D, Zhao CM, Takaishi S, Dockray GJ, Varro A, Rogers AB, Fox JG, Wang TC (2004) Overexpression of glycine-extended gastrin inhibits parietal cell loss and atrophy in the mouse stomach. Cancer Res 64:8160–8166PubMedCrossRef
32.
go back to reference Cui J, Xu G, Liu J, Pang Z, Florholmen J, Cui G (2013) The expression of non-mast histamine in tumor associated microvessels in human colorectal cancers. Pathol Oncol Res 19:311–316PubMedCrossRef Cui J, Xu G, Liu J, Pang Z, Florholmen J, Cui G (2013) The expression of non-mast histamine in tumor associated microvessels in human colorectal cancers. Pathol Oncol Res 19:311–316PubMedCrossRef
33.
go back to reference Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN, Lukic ML (2014) Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 134:1669–1682PubMedCrossRef Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN, Lukic ML (2014) Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 134:1669–1682PubMedCrossRef
34.
go back to reference Kuchler AM, Pollheimer J, Balogh J, Sponheim J, Manley L, Sorensen DR, De Angelis PM, Scott H, Haraldsen G (2008) Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol 173:1229–1242PubMedCentralPubMedCrossRef Kuchler AM, Pollheimer J, Balogh J, Sponheim J, Manley L, Sorensen DR, De Angelis PM, Scott H, Haraldsen G (2008) Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol 173:1229–1242PubMedCentralPubMedCrossRef
35.
go back to reference Contasta I, Berghella AM, Pellegrini P, Adorno D (2003) Passage from normal mucosa to adenoma and colon cancer: alteration of normal sCD30 mechanisms regulating TH1/TH2 cell functions. Cancer Biother Radiopharm 18:549–557PubMedCrossRef Contasta I, Berghella AM, Pellegrini P, Adorno D (2003) Passage from normal mucosa to adenoma and colon cancer: alteration of normal sCD30 mechanisms regulating TH1/TH2 cell functions. Cancer Biother Radiopharm 18:549–557PubMedCrossRef
36.
go back to reference Marvie P, Lisbonne M, L’Helgoualc’h A, Rauch M, Turlin B, Preisser L, Bourd-Boittin K, Theret N, Gascan H, Piquet-Pellorce C, Samson M (2010) Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med 14:1726–1739PubMedCrossRef Marvie P, Lisbonne M, L’Helgoualc’h A, Rauch M, Turlin B, Preisser L, Bourd-Boittin K, Theret N, Gascan H, Piquet-Pellorce C, Samson M (2010) Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med 14:1726–1739PubMedCrossRef
37.
go back to reference Meephansan J, Tsuda H, Komine M, Tominaga S, Ohtsuki M (2012) Regulation of IL-33 expression by IFN-gamma and tumor necrosis factor-alpha in normal human epidermal keratinocytes. J Invest Dermatol 132:2593–2600PubMedCrossRef Meephansan J, Tsuda H, Komine M, Tominaga S, Ohtsuki M (2012) Regulation of IL-33 expression by IFN-gamma and tumor necrosis factor-alpha in normal human epidermal keratinocytes. J Invest Dermatol 132:2593–2600PubMedCrossRef
38.
go back to reference Byrne SN, Beaugie C, O’Sullivan C, Leighton S, Halliday GM (2011) The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am J Pathol 179:211–222PubMedCentralPubMedCrossRef Byrne SN, Beaugie C, O’Sullivan C, Leighton S, Halliday GM (2011) The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am J Pathol 179:211–222PubMedCentralPubMedCrossRef
39.
go back to reference Seltmann J, Werfel T, Wittmann M (2013) Evidence for a regulatory loop between IFN-gamma and IL-33 in skin inflammation. Exp Dermatol 22:102–107PubMedCrossRef Seltmann J, Werfel T, Wittmann M (2013) Evidence for a regulatory loop between IFN-gamma and IL-33 in skin inflammation. Exp Dermatol 22:102–107PubMedCrossRef
40.
go back to reference Gschwantler M, Kriwanek S, Langner E, Goritzer B, Schrutka-Kolbl C, Brownstone E, Feichtinger H, Weiss W (2002) High-grade dysplasia and invasive carcinoma in colorectal adenomas: a multivariate analysis of the impact of adenoma and patient characteristics. Eur J Gastroenterol Hepatol 14:183–188PubMedCrossRef Gschwantler M, Kriwanek S, Langner E, Goritzer B, Schrutka-Kolbl C, Brownstone E, Feichtinger H, Weiss W (2002) High-grade dysplasia and invasive carcinoma in colorectal adenomas: a multivariate analysis of the impact of adenoma and patient characteristics. Eur J Gastroenterol Hepatol 14:183–188PubMedCrossRef
41.
go back to reference Ajdukovic J, Tonkic A, Salamunic I, Hozo I, Simunic M, Bonacin D (2010) Interleukins IL-33 and IL-17/IL-17A in patients with ulcerative colitis. Hepatogastroenterology 57:1442–1444PubMed Ajdukovic J, Tonkic A, Salamunic I, Hozo I, Simunic M, Bonacin D (2010) Interleukins IL-33 and IL-17/IL-17A in patients with ulcerative colitis. Hepatogastroenterology 57:1442–1444PubMed
42.
go back to reference Seidelin JB, Bjerrum JT, Coskun M, Widjaya B, Vainer B, Nielsen OH (2010) IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett 128:80–85PubMedCrossRef Seidelin JB, Bjerrum JT, Coskun M, Widjaya B, Vainer B, Nielsen OH (2010) IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett 128:80–85PubMedCrossRef
43.
go back to reference Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG (2009) Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114:3117–3126PubMedCrossRef Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG (2009) Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114:3117–3126PubMedCrossRef
Metadata
Title
Dynamics of the IL-33/ST2 network in the progression of human colorectal adenoma to sporadic colorectal cancer
Authors
Guanglin Cui
Haili Qi
Mona D. Gundersen
Hang Yang
Ingrid Christiansen
Sveinung W. Sørbye
Rasmus Goll
Jon Florholmen
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 2/2015
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1624-x

Other articles of this Issue 2/2015

Cancer Immunology, Immunotherapy 2/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine