Skip to main content
Top
Published in: Abdominal Radiology 8/2021

01-08-2021 | Hepatocellular Carcinoma | Special Section: HCC treatment

Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response

Authors: Amir A. Borhani, Roberta Catania, Yuri S. Velichko, Stefanie Hectors, Bachir Taouli, Sara Lewis

Published in: Abdominal Radiology | Issue 8/2021

Login to get access

Abstract

Radiomics refers to the process of conversion of conventional medical images into quantifiable data (“features”) which can be further mined to reveal complex patterns and relationships between the voxels in the image. These high throughput features can potentially reflect the histology of biologic tissues at macroscopic and microscopic levels. Several studies have investigated radiomics of hepatocellular carcinoma (HCC) before and after treatment. HCC is a heterogeneous disease with diverse phenotypical and genotypical landscape. Due to this inherent heterogeneity, HCC lesions can manifest variable aggressiveness with different response to treatment options, including the newer targeted therapies. Hence, radiomics can be used as a potential tool to enable patient selection for therapies and to predict response to treatments and outcome. Additionally, radiomics may serve as a tool for earlier and more efficient assessment of response to treatment. Radiomics, radiogenomics, and radio-immunoprofiling and their potential roles in management of patients with HCC will be discussed and critically reviewed in this article.
Literature
1.
go back to reference Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.PubMed Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.PubMed
2.
go back to reference Khemlina, G., S. Ikeda, and R. Kurzrock, The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer, 2017. 16(1): p. 149.PubMedPubMedCentralCrossRef Khemlina, G., S. Ikeda, and R. Kurzrock, The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer, 2017. 16(1): p. 149.PubMedPubMedCentralCrossRef
3.
go back to reference Kurebayashi, Y., et al., Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018. 68(3): p. 1025-1041.PubMedCrossRef Kurebayashi, Y., et al., Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018. 68(3): p. 1025-1041.PubMedCrossRef
5.
go back to reference Cariani, E., et al., Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One, 2012. 7(3): p. e32493.PubMedPubMedCentralCrossRef Cariani, E., et al., Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One, 2012. 7(3): p. e32493.PubMedPubMedCentralCrossRef
6.
go back to reference Lewis, S., S. Hectors, and B. Taouli, Radiomics of hepatocellular carcinoma. Abdom Radiol (NY), 2020. Lewis, S., S. Hectors, and B. Taouli, Radiomics of hepatocellular carcinoma. Abdom Radiol (NY), 2020.
7.
go back to reference Miranda Magalhaes Santos, J.M., et al., State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY), 2020. 45(2): p. 342–353. Miranda Magalhaes Santos, J.M., et al., State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY), 2020. 45(2): p. 342–353.
9.
10.
go back to reference Apte, A.P., et al., Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys, 2018. Apte, A.P., et al., Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys, 2018.
11.
go back to reference Nioche, C., et al., LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res, 2018. 78(16): p. 4786-4789.PubMedCrossRef Nioche, C., et al., LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res, 2018. 78(16): p. 4786-4789.PubMedCrossRef
13.
go back to reference Chlebus, G., et al., Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Scientific Reports, 2018. 8(1): p. 15497.PubMedPubMedCentralCrossRef Chlebus, G., et al., Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Scientific Reports, 2018. 8(1): p. 15497.PubMedPubMedCentralCrossRef
14.
go back to reference Fave, X., et al., Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Translational Cancer Research, 2016. 5(4): p. 349-363.CrossRef Fave, X., et al., Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Translational Cancer Research, 2016. 5(4): p. 349-363.CrossRef
15.
go back to reference Shafiq-Ul-Hassan, M., et al., Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Medical physics, 2017. 44(3): p. 1050-1062.PubMedCrossRef Shafiq-Ul-Hassan, M., et al., Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Medical physics, 2017. 44(3): p. 1050-1062.PubMedCrossRef
16.
go back to reference Velichko, Y.S., et al., Association Between the Size and 3D CT-Based Radiomic Features of Breast Cancer Hepatic Metastasis. Academic Radiology, 2020. Velichko, Y.S., et al., Association Between the Size and 3D CT-Based Radiomic Features of Breast Cancer Hepatic Metastasis. Academic Radiology, 2020.
17.
go back to reference Lehmann, T.M., C. Gonner, and K. Spitzer, Addendum: B-spline interpolation in medical image processing. IEEE Transactions on Medical Imaging, 2001. 20(7): p. 660-665.PubMedCrossRef Lehmann, T.M., C. Gonner, and K. Spitzer, Addendum: B-spline interpolation in medical image processing. IEEE Transactions on Medical Imaging, 2001. 20(7): p. 660-665.PubMedCrossRef
19.
go back to reference Zwanenburg, A., et al., Image biomarker standardisation initiative-feature definitions. arXiv preprint arXiv:1612.07003, 2016. Zwanenburg, A., et al., Image biomarker standardisation initiative-feature definitions. arXiv preprint arXiv:1612.07003, 2016.
20.
go back to reference Haralick, R.M., K. Shanmugam, and I. Dinstein, Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973. SMC-3(6): p. 610–621. Haralick, R.M., K. Shanmugam, and I. Dinstein, Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973. SMC-3(6): p. 610–621.
21.
go back to reference Parekh, V. and M.A. Jacobs, Radiomics: a new application from established techniques. Expert review of precision medicine and drug development, 2016. 1(2): p. 207-226.PubMedPubMedCentralCrossRef Parekh, V. and M.A. Jacobs, Radiomics: a new application from established techniques. Expert review of precision medicine and drug development, 2016. 1(2): p. 207-226.PubMedPubMedCentralCrossRef
23.
go back to reference Di Giovanni, P., et al., The biological correlates of macroscopic breast tumour structure measured using fractal analysis in patients undergoing neoadjuvant chemotherapy. Breast Cancer Research and Treatment, 2012. 133(3): p. 1199-1206.PubMedCrossRef Di Giovanni, P., et al., The biological correlates of macroscopic breast tumour structure measured using fractal analysis in patients undergoing neoadjuvant chemotherapy. Breast Cancer Research and Treatment, 2012. 133(3): p. 1199-1206.PubMedCrossRef
24.
go back to reference Balboa, R.M. and N.M. Grzywacz, Power spectra and distribution of contrasts of natural images from different habitats. Vision Research, 2003. 43(24): p. 2527-2537.PubMedCrossRef Balboa, R.M. and N.M. Grzywacz, Power spectra and distribution of contrasts of natural images from different habitats. Vision Research, 2003. 43(24): p. 2527-2537.PubMedCrossRef
25.
go back to reference Baish, J.W. and R.K. Jain, Fractals and Cancer. Cancer Research, 2000. 60(14): p. 3683-3688.PubMed Baish, J.W. and R.K. Jain, Fractals and Cancer. Cancer Research, 2000. 60(14): p. 3683-3688.PubMed
26.
go back to reference Wang, X.-H., et al., MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. British Journal of Cancer, 2020. 122(7): p. 978-985.PubMedPubMedCentralCrossRef Wang, X.-H., et al., MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. British Journal of Cancer, 2020. 122(7): p. 978-985.PubMedPubMedCentralCrossRef
27.
go back to reference Zwanenburg, A., et al., The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020. 295(2): p. 328-338.PubMedCrossRef Zwanenburg, A., et al., The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020. 295(2): p. 328-338.PubMedCrossRef
29.
go back to reference Tibshirani, R., Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996. 58(1): p. 267–288. Tibshirani, R., Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996. 58(1): p. 267–288.
30.
go back to reference Clark, K., et al., The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 2013. 26(6): p. 1045-1057.PubMedPubMedCentralCrossRef Clark, K., et al., The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 2013. 26(6): p. 1045-1057.PubMedPubMedCentralCrossRef
31.
go back to reference Llovet, J.M., et al., Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018. 15(10): p. 599-616.PubMedCrossRef Llovet, J.M., et al., Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018. 15(10): p. 599-616.PubMedCrossRef
32.
go back to reference Goossens, N., X. Sun, and Y. Hoshida, Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol, 2015. 2(4): p. 371-379.PubMedPubMedCentralCrossRef Goossens, N., X. Sun, and Y. Hoshida, Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol, 2015. 2(4): p. 371-379.PubMedPubMedCentralCrossRef
33.
go back to reference Friemel, J., et al., Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res, 2015. 21(8): p. 1951-61.PubMedCrossRef Friemel, J., et al., Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res, 2015. 21(8): p. 1951-61.PubMedCrossRef
34.
35.
go back to reference Segal, E., et al., Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 2007. 25(6): p. 675-80.PubMedCrossRef Segal, E., et al., Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 2007. 25(6): p. 675-80.PubMedCrossRef
36.
go back to reference Taouli, B., et al., Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol, 2017. 27(11): p. 4472-4481.PubMedPubMedCentralCrossRef Taouli, B., et al., Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol, 2017. 27(11): p. 4472-4481.PubMedPubMedCentralCrossRef
37.
go back to reference Hectors, S.J., et al., MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol, 2020. 30(7): p. 3759-3769.PubMedPubMedCentralCrossRef Hectors, S.J., et al., MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol, 2020. 30(7): p. 3759-3769.PubMedPubMedCentralCrossRef
38.
go back to reference Furlan, A., et al., A radiogenomic analysis of hepatocellular carcinoma: association between fractional allelic imbalance rate index and the liver imaging reporting and data system (LI-RADS) categories and features. Br J Radiol, 2018. 91(1086): p. 20170962.PubMedPubMedCentralCrossRef Furlan, A., et al., A radiogenomic analysis of hepatocellular carcinoma: association between fractional allelic imbalance rate index and the liver imaging reporting and data system (LI-RADS) categories and features. Br J Radiol, 2018. 91(1086): p. 20170962.PubMedPubMedCentralCrossRef
39.
go back to reference Kuo, M.D., et al., Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol, 2007. 18(7): p. 821-31.PubMedCrossRef Kuo, M.D., et al., Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol, 2007. 18(7): p. 821-31.PubMedCrossRef
40.
go back to reference Wakabayashi, T., et al., Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int, 2019. 13(5): p. 546-559.PubMedCrossRef Wakabayashi, T., et al., Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int, 2019. 13(5): p. 546-559.PubMedCrossRef
41.
go back to reference Xia, W., et al., Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol, 2018. 63(3): p. 035044.PubMedCrossRef Xia, W., et al., Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol, 2018. 63(3): p. 035044.PubMedCrossRef
42.
go back to reference Hectors, S.J., et al., Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep, 2017. 7(1): p. 2452.PubMedPubMedCentralCrossRef Hectors, S.J., et al., Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep, 2017. 7(1): p. 2452.PubMedPubMedCentralCrossRef
43.
go back to reference Zhu, A.X., et al., Ramucirumab in advanced hepatocellular carcinoma in REACH-2: the true value of alpha-fetoprotein. Lancet Oncol, 2019. 20(4): p. e191.PubMedCrossRef Zhu, A.X., et al., Ramucirumab in advanced hepatocellular carcinoma in REACH-2: the true value of alpha-fetoprotein. Lancet Oncol, 2019. 20(4): p. e191.PubMedCrossRef
44.
go back to reference Sia, D., et al., Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology, 2017. 153(3): p. 812-826.PubMed Sia, D., et al., Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology, 2017. 153(3): p. 812-826.PubMed
45.
go back to reference Sun, R., et al., A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 2018. 19(9): p. 1180-1191.PubMedCrossRef Sun, R., et al., A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 2018. 19(9): p. 1180-1191.PubMedCrossRef
46.
go back to reference Ruiz de Galarreta, M., et al., beta-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov, 2019. 9(8): p. 1124–1141. Ruiz de Galarreta, M., et al., beta-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov, 2019. 9(8): p. 1124–1141.
47.
go back to reference Gabrielson, A., et al., Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol Res, 2016. 4(5): p. 419-30.PubMedPubMedCentralCrossRef Gabrielson, A., et al., Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol Res, 2016. 4(5): p. 419-30.PubMedPubMedCentralCrossRef
48.
go back to reference Sun, C., et al., The predictive value of centre tumour CD8(+) T cells in patients with hepatocellular carcinoma: comparison with Immunoscore. Oncotarget, 2015. 6(34): p. 35602-15.PubMedPubMedCentralCrossRef Sun, C., et al., The predictive value of centre tumour CD8(+) T cells in patients with hepatocellular carcinoma: comparison with Immunoscore. Oncotarget, 2015. 6(34): p. 35602-15.PubMedPubMedCentralCrossRef
49.
go back to reference Yao, Q., et al., Prognostic value of immunoscore to identify mortality outcomes in adults with HBV-related primary hepatocellular carcinoma. Medicine (Baltimore), 2017. 96(17): p. e6735.CrossRef Yao, Q., et al., Prognostic value of immunoscore to identify mortality outcomes in adults with HBV-related primary hepatocellular carcinoma. Medicine (Baltimore), 2017. 96(17): p. e6735.CrossRef
50.
go back to reference Garnelo, M., et al., Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut, 2017. 66(2): p. 342-351.PubMedCrossRef Garnelo, M., et al., Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut, 2017. 66(2): p. 342-351.PubMedCrossRef
51.
go back to reference Chen, S., et al., Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol, 2019. 29(8): p. 4177-4187.PubMedCrossRef Chen, S., et al., Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol, 2019. 29(8): p. 4177-4187.PubMedCrossRef
52.
go back to reference Liao, H., et al., Preoperative Radiomic Approach to Evaluate Tumor-Infiltrating CD8(+) T Cells in Hepatocellular Carcinoma Patients Using Contrast-Enhanced Computed Tomography. Ann Surg Oncol, 2019. 26(13): p. 4537-4547.PubMedCrossRef Liao, H., et al., Preoperative Radiomic Approach to Evaluate Tumor-Infiltrating CD8(+) T Cells in Hepatocellular Carcinoma Patients Using Contrast-Enhanced Computed Tomography. Ann Surg Oncol, 2019. 26(13): p. 4537-4547.PubMedCrossRef
53.
go back to reference Inchingolo, R., et al., Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions. World J Gastroenterol, 2019. 25(32): p. 4614-4628.PubMedPubMedCentralCrossRef Inchingolo, R., et al., Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions. World J Gastroenterol, 2019. 25(32): p. 4614-4628.PubMedPubMedCentralCrossRef
54.
go back to reference Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53.CrossRefPubMed Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53.CrossRefPubMed
55.
go back to reference Chernyak, V., et al., Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology, 2018. 289(3): p. 816-830.PubMedCrossRef Chernyak, V., et al., Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology, 2018. 289(3): p. 816-830.PubMedCrossRef
56.
go back to reference Mendiratta-Lala, M., et al., Natural history of hepatocellular carcinoma after stereotactic body radiation therapy. Abdom Radiol (NY), 2020. 45(11): p. 3698-3708.CrossRef Mendiratta-Lala, M., et al., Natural history of hepatocellular carcinoma after stereotactic body radiation therapy. Abdom Radiol (NY), 2020. 45(11): p. 3698-3708.CrossRef
57.
go back to reference Kloth, C., et al., Evaluation of Texture Analysis Parameter for Response Prediction in Patients with Hepatocellular Carcinoma Undergoing Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE) Using Biphasic Contrast-enhanced CT Image Data: Correlation with Liver Perfusion CT. Acad Radiol, 2017. 24(11): p. 1352-1363.PubMedCrossRef Kloth, C., et al., Evaluation of Texture Analysis Parameter for Response Prediction in Patients with Hepatocellular Carcinoma Undergoing Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE) Using Biphasic Contrast-enhanced CT Image Data: Correlation with Liver Perfusion CT. Acad Radiol, 2017. 24(11): p. 1352-1363.PubMedCrossRef
58.
go back to reference Yu, J.Y., et al., Value of texture analysis based on enhanced MRI for predicting an early therapeutic response to transcatheter arterial chemoembolisation combined with high-intensity focused ultrasound treatment in hepatocellular carcinoma. Clin Radiol, 2018. 73(8): p. 758 e9–758 e18. Yu, J.Y., et al., Value of texture analysis based on enhanced MRI for predicting an early therapeutic response to transcatheter arterial chemoembolisation combined with high-intensity focused ultrasound treatment in hepatocellular carcinoma. Clin Radiol, 2018. 73(8): p. 758 e9–758 e18.
59.
go back to reference Gordic, S., et al., Prediction of hepatocellular carcinoma response to (90)Yttrium radioembolization using volumetric ADC histogram quantification: preliminary results. Cancer Imaging, 2019. 19(1): p. 29.PubMedPubMedCentralCrossRef Gordic, S., et al., Prediction of hepatocellular carcinoma response to (90)Yttrium radioembolization using volumetric ADC histogram quantification: preliminary results. Cancer Imaging, 2019. 19(1): p. 29.PubMedPubMedCentralCrossRef
60.
go back to reference Sun, Y., et al., Predicting the Outcome of Transcatheter Arterial Embolization Therapy for Unresectable Hepatocellular Carcinoma Based on Radiomics of Preoperative Multiparameter MRI. J Magn Reson Imaging, 2020. 52(4): p. 1083-1090.PubMedCrossRef Sun, Y., et al., Predicting the Outcome of Transcatheter Arterial Embolization Therapy for Unresectable Hepatocellular Carcinoma Based on Radiomics of Preoperative Multiparameter MRI. J Magn Reson Imaging, 2020. 52(4): p. 1083-1090.PubMedCrossRef
61.
go back to reference Reis, S.P., et al., Tumor Enhancement and Heterogeneity Are Associated With Treatment Response to Drug-Eluting Bead Chemoembolization for Hepatocellular Carcinoma. J Comput Assist Tomogr, 2017. 41(2): p. 289-293.PubMedCrossRef Reis, S.P., et al., Tumor Enhancement and Heterogeneity Are Associated With Treatment Response to Drug-Eluting Bead Chemoembolization for Hepatocellular Carcinoma. J Comput Assist Tomogr, 2017. 41(2): p. 289-293.PubMedCrossRef
62.
go back to reference Park, H.J., et al., Prediction of Therapeutic Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization Based on Pretherapeutic Dynamic CT and Textural Findings. AJR Am J Roentgenol, 2017. 209(4): p. W211-W220.PubMedCrossRef Park, H.J., et al., Prediction of Therapeutic Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization Based on Pretherapeutic Dynamic CT and Textural Findings. AJR Am J Roentgenol, 2017. 209(4): p. W211-W220.PubMedCrossRef
63.
go back to reference Llovet, J.M., et al., Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol, 2015. 12(8): p. 436.PubMedCrossRef Llovet, J.M., et al., Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol, 2015. 12(8): p. 436.PubMedCrossRef
64.
go back to reference Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.PubMedCrossRef Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.PubMedCrossRef
65.
go back to reference Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.PubMedCrossRef Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.PubMedCrossRef
66.
go back to reference European Association for the Study of the Liver. Electronic address, e.e.e. and L. European Association for the Study of the, EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol, 2018. 69(1): p. 182–236. European Association for the Study of the Liver. Electronic address, e.e.e. and L. European Association for the Study of the, EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol, 2018. 69(1): p. 182–236.
67.
go back to reference [67] Finn, R.S. and A.L. Cheng, Atezolizumab and Bevacizumab in Hepatocellular Carcinoma. Reply. N Engl J Med, 2020. 383(7): p. 695.PubMed [67] Finn, R.S. and A.L. Cheng, Atezolizumab and Bevacizumab in Hepatocellular Carcinoma. Reply. N Engl J Med, 2020. 383(7): p. 695.PubMed
68.
go back to reference Lee, M.S., et al., Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol, 2020. 21(6): p. 808-820.PubMedCrossRef Lee, M.S., et al., Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol, 2020. 21(6): p. 808-820.PubMedCrossRef
69.
go back to reference Bteich, F. and A.M. Di Bisceglie, Current and Future Systemic Therapies for Hepatocellular Carcinoma. Gastroenterol Hepatol (N Y), 2019. 15(5): p. 266-272. Bteich, F. and A.M. Di Bisceglie, Current and Future Systemic Therapies for Hepatocellular Carcinoma. Gastroenterol Hepatol (N Y), 2019. 15(5): p. 266-272.
70.
go back to reference Mule, S., et al., Advanced Hepatocellular Carcinoma: Pretreatment Contrast-enhanced CT Texture Parameters as Predictive Biomarkers of Survival in Patients Treated with Sorafenib. Radiology, 2018. 288(2): p. 445-455.PubMedCrossRef Mule, S., et al., Advanced Hepatocellular Carcinoma: Pretreatment Contrast-enhanced CT Texture Parameters as Predictive Biomarkers of Survival in Patients Treated with Sorafenib. Radiology, 2018. 288(2): p. 445-455.PubMedCrossRef
71.
go back to reference Fu, S., et al., Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients' selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017. 8(23): p. 37855-37865.PubMedCrossRef Fu, S., et al., Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients' selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017. 8(23): p. 37855-37865.PubMedCrossRef
72.
go back to reference Liu, Q.P., et al., Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning. EClinicalMedicine, 2020. 23: p. 100379.PubMedPubMedCentralCrossRef Liu, Q.P., et al., Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning. EClinicalMedicine, 2020. 23: p. 100379.PubMedPubMedCentralCrossRef
73.
go back to reference Meng, X.P., et al., Radiomics Analysis on Multiphase Contrast-Enhanced CT: A Survival Prediction Tool in Patients With Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Front Oncol, 2020. 10: p. 1196.PubMedPubMedCentralCrossRef Meng, X.P., et al., Radiomics Analysis on Multiphase Contrast-Enhanced CT: A Survival Prediction Tool in Patients With Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Front Oncol, 2020. 10: p. 1196.PubMedPubMedCentralCrossRef
74.
go back to reference Song, W., et al., MRI-Based Radiomics: Associations With the Recurrence-Free Survival of Patients With Hepatocellular Carcinoma Treated With Conventional Transcatheter Arterial Chemoembolization. J Magn Reson Imaging, 2020. 52(2): p. 461-473.PubMedCrossRef Song, W., et al., MRI-Based Radiomics: Associations With the Recurrence-Free Survival of Patients With Hepatocellular Carcinoma Treated With Conventional Transcatheter Arterial Chemoembolization. J Magn Reson Imaging, 2020. 52(2): p. 461-473.PubMedCrossRef
75.
go back to reference Wang, X.H., et al., MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. Br J Cancer, 2020. 122(7): p. 978-985.PubMedPubMedCentralCrossRef Wang, X.H., et al., MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. Br J Cancer, 2020. 122(7): p. 978-985.PubMedPubMedCentralCrossRef
76.
go back to reference Kim, J., et al., Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol, 2018. 211(5): p. 1026-1034.PubMedCrossRef Kim, J., et al., Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol, 2018. 211(5): p. 1026-1034.PubMedCrossRef
77.
go back to reference Blanc-Durand, P., et al., Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget, 2018. 9(4): p. 4549-4558.PubMedCrossRef Blanc-Durand, P., et al., Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget, 2018. 9(4): p. 4549-4558.PubMedCrossRef
Metadata
Title
Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response
Authors
Amir A. Borhani
Roberta Catania
Yuri S. Velichko
Stefanie Hectors
Bachir Taouli
Sara Lewis
Publication date
01-08-2021
Publisher
Springer US
Published in
Abdominal Radiology / Issue 8/2021
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-021-03085-w

Other articles of this Issue 8/2021

Abdominal Radiology 8/2021 Go to the issue