Skip to main content
Top
Published in: Abdominal Radiology 6/2019

01-06-2019

Radiogenomics in renal cell carcinoma

Authors: Francesco Alessandrino, Atul B. Shinagare, Dominick Bossé, Toni K. Choueiri, Katherine M. Krajewski

Published in: Abdominal Radiology | Issue 6/2019

Login to get access

Abstract

Radiogenomics, a field of radiology investigating the association between the imaging features of a disease and its gene expression pattern, has expanded considerably in the last few years. Recent advances in whole-genome sequencing of clear cell renal cell carcinoma (ccRCC) and the identification of mutations with prognostic significance have led to increased interest in the relationship between imaging and genomic data. ccRCC is particularly suitable for radiogenomic analysis as the relative paucity of mutated genes allows for more straightforward genomic-imaging associations. The ultimate aim of radiogenomics of ccRCC is to retrieve additional data for accurate diagnosis, prognostic stratification, and optimization of therapy. In this review article, we will present the state-of-the-art of radiogenomics of ccRCC, and after briefly reviewing updates in genomics, we will discuss imaging-genomic associations for diagnosis and staging, prognosis, and for assessment of optimal therapy in ccRCC.
Literature
1.
go back to reference Kuo MD, Jamshidi N (2014) Behind the numbers: decoding molecular phenotypes with radiogenomics-guiding principles and technical considerations. Radiology 270(2):320–325CrossRefPubMed Kuo MD, Jamshidi N (2014) Behind the numbers: decoding molecular phenotypes with radiogenomics-guiding principles and technical considerations. Radiology 270(2):320–325CrossRefPubMed
2.
go back to reference Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMed Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMed
3.
go back to reference Alessandrino F, Krajewski KM, Shinagare AB (2016) Update on radiogenomics of clear cell renal cell carcinoma. Eur Urol Focus 2(6):572–573CrossRefPubMed Alessandrino F, Krajewski KM, Shinagare AB (2016) Update on radiogenomics of clear cell renal cell carcinoma. Eur Urol Focus 2(6):572–573CrossRefPubMed
4.
go back to reference Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X (2007) Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol 18(7):821–831CrossRefPubMed Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X (2007) Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol 18(7):821–831CrossRefPubMed
5.
go back to reference Diehn M, Nardini C, Wang DS, et al. (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA 105(13):5213–5218CrossRefPubMedPubMedCentral Diehn M, Nardini C, Wang DS, et al. (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci USA 105(13):5213–5218CrossRefPubMedPubMedCentral
6.
go back to reference Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70(2):232–241CrossRefPubMed Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70(2):232–241CrossRefPubMed
7.
go back to reference The Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49CrossRefPubMedCentral The Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49CrossRefPubMedCentral
8.
go back to reference Karlo CA, Di Paolo PL, Chaim J, et al. (2014) Radiogenomics of clear-cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2):464–471CrossRefPubMed Karlo CA, Di Paolo PL, Chaim J, et al. (2014) Radiogenomics of clear-cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2):464–471CrossRefPubMed
9.
go back to reference Shinagare AB, Vikram R, Jaffe C, et al. (2015) Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA–RCC) Imaging Research Group. Abdom Imaging 40(6):1684–1692CrossRefPubMedPubMedCentral Shinagare AB, Vikram R, Jaffe C, et al. (2015) Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA–RCC) Imaging Research Group. Abdom Imaging 40(6):1684–1692CrossRefPubMedPubMedCentral
10.
go back to reference Seizinger BR, Rouleau GA, Ozelius LJ, et al. (1988) Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332(6161):268–269CrossRefPubMed Seizinger BR, Rouleau GA, Ozelius LJ, et al. (1988) Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332(6161):268–269CrossRefPubMed
11.
go back to reference Dalgliesh GL, Furge K, Greenman C, et al. (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363CrossRefPubMedPubMedCentral Dalgliesh GL, Furge K, Greenman C, et al. (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363CrossRefPubMedPubMedCentral
12.
go back to reference Duns G, van den Berg E, van Duivenbode I, et al. (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291CrossRefPubMed Duns G, van den Berg E, van Duivenbode I, et al. (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291CrossRefPubMed
13.
go back to reference Guo G, Gui Y, Gao S, et al. (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44(1):17–19CrossRef Guo G, Gui Y, Gao S, et al. (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44(1):17–19CrossRef
14.
15.
go back to reference Varela I, Tarpey P, Raine K, et al. (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542CrossRefPubMedPubMedCentral Varela I, Tarpey P, Raine K, et al. (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542CrossRefPubMedPubMedCentral
16.
go back to reference Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892CrossRefPubMedPubMedCentral
17.
go back to reference Kreso A, O’Brien CA, van Galen P, et al. (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548CrossRefPubMed Kreso A, O’Brien CA, van Galen P, et al. (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548CrossRefPubMed
19.
go back to reference Sato Y, Yoshizato T, Shiraishi Y, et al. (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45(8):860–867CrossRefPubMed Sato Y, Yoshizato T, Shiraishi Y, et al. (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45(8):860–867CrossRefPubMed
20.
22.
go back to reference Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461CrossRefPubMed Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461CrossRefPubMed
23.
go back to reference Maxwell PH, Wiesener MS, Chang GW, et al. (1999) The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275CrossRefPubMed Maxwell PH, Wiesener MS, Chang GW, et al. (1999) The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275CrossRefPubMed
24.
go back to reference Kim BJ, Kim JH, Kim HS, Zang DY (2017) Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review. Oncotarget 8(8):13979–13985PubMedPubMedCentral Kim BJ, Kim JH, Kim HS, Zang DY (2017) Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review. Oncotarget 8(8):13979–13985PubMedPubMedCentral
25.
go back to reference Nargund AM, Osmanbeyoglu HU, Cheng EH, et al. (2017) SWI/SNF tumor suppressor gene PBRM1/BAF180 in human clear cell kidney cancer. Mol Cell Oncol 4(4):e1342747CrossRefPubMedPubMedCentral Nargund AM, Osmanbeyoglu HU, Cheng EH, et al. (2017) SWI/SNF tumor suppressor gene PBRM1/BAF180 in human clear cell kidney cancer. Mol Cell Oncol 4(4):e1342747CrossRefPubMedPubMedCentral
26.
go back to reference Joseph RW, Kapur P, Serie DJ, et al. (2016) Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J Urol 195(1):180–187CrossRefPubMed Joseph RW, Kapur P, Serie DJ, et al. (2016) Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J Urol 195(1):180–187CrossRefPubMed
27.
go back to reference Kim SH, Park WS, Park EY, et al. (2017) The prognostic value of BAP1, PBRM1, pS6, PTEN, TGase2, PD-L1, CA9, PSMA, and Ki-67 tissue markers in localized renal cell carcinoma: a retrospective study of tissue microarrays using immunohistochemistry. PLoS ONE 12(6):e0179610CrossRefPubMedPubMedCentral Kim SH, Park WS, Park EY, et al. (2017) The prognostic value of BAP1, PBRM1, pS6, PTEN, TGase2, PD-L1, CA9, PSMA, and Ki-67 tissue markers in localized renal cell carcinoma: a retrospective study of tissue microarrays using immunohistochemistry. PLoS ONE 12(6):e0179610CrossRefPubMedPubMedCentral
28.
go back to reference Fay AP, de Velasco G, Ho TH, et al. (2016) Whole-exome sequencing in two extreme phenotypes of response to VEGF-targeted therapies in patients with metastatic clear cell renal cell carcinoma. J Natl Compr Canc Netw 14(7):820–824CrossRefPubMedPubMedCentral Fay AP, de Velasco G, Ho TH, et al. (2016) Whole-exome sequencing in two extreme phenotypes of response to VEGF-targeted therapies in patients with metastatic clear cell renal cell carcinoma. J Natl Compr Canc Netw 14(7):820–824CrossRefPubMedPubMedCentral
29.
go back to reference Hsieh JJ, Chen D, Wang PI, et al. (2017) Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol 71(3):405–414CrossRefPubMed Hsieh JJ, Chen D, Wang PI, et al. (2017) Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol 71(3):405–414CrossRefPubMed
32.
go back to reference Bielecka ZF, Czarnecka AM, Szczylik C (2014) Genomic analysis as the first step toward personalized treatment in renal cell carcinoma. Front Oncol 4:194CrossRefPubMedPubMedCentral Bielecka ZF, Czarnecka AM, Szczylik C (2014) Genomic analysis as the first step toward personalized treatment in renal cell carcinoma. Front Oncol 4:194CrossRefPubMedPubMedCentral
33.
go back to reference Kapur P, Peña-Llopis S, Christie A, et al. (2013) Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 14(2):159–167CrossRefPubMedPubMedCentral Kapur P, Peña-Llopis S, Christie A, et al. (2013) Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 14(2):159–167CrossRefPubMedPubMedCentral
34.
go back to reference Hakimi AA, Ostrovnaya I, Reva B, et al. (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19(12):3259–3267CrossRefPubMedPubMedCentral Hakimi AA, Ostrovnaya I, Reva B, et al. (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19(12):3259–3267CrossRefPubMedPubMedCentral
35.
go back to reference Ge Y-Z, Xu L-W, Zhou C-C, et al. (2017) A BAP1 mutation-specific MicroRNA signature predicts clinical outcomes in clear cell renal cell carcinoma patients with wild-type BAP1. J Cancer 8(13):2643–2652CrossRefPubMedPubMedCentral Ge Y-Z, Xu L-W, Zhou C-C, et al. (2017) A BAP1 mutation-specific MicroRNA signature predicts clinical outcomes in clear cell renal cell carcinoma patients with wild-type BAP1. J Cancer 8(13):2643–2652CrossRefPubMedPubMedCentral
37.
go back to reference Tennenbaum DM, Manley BJ, Zabor E, et al. (2017) Genomic alterations as predictors of survival among patients within a combined cohort with clear cell renal cell carcinoma undergoing cytoreductive nephrectomy. Urol Oncol 35(8):532.e7–537.e13CrossRef Tennenbaum DM, Manley BJ, Zabor E, et al. (2017) Genomic alterations as predictors of survival among patients within a combined cohort with clear cell renal cell carcinoma undergoing cytoreductive nephrectomy. Urol Oncol 35(8):532.e7–537.e13CrossRef
38.
go back to reference Liu W, Fu Q, An H, et al. (2015) Decreased expression of SETD2 predicts unfavorable prognosis in patients with nonmetastatic clear-cell renal cell carcinoma. Medicine 94(45):e2004CrossRefPubMedPubMedCentral Liu W, Fu Q, An H, et al. (2015) Decreased expression of SETD2 predicts unfavorable prognosis in patients with nonmetastatic clear-cell renal cell carcinoma. Medicine 94(45):e2004CrossRefPubMedPubMedCentral
41.
go back to reference Ho TH, Choueiri TK, Wang K, et al. (2016) Correlation between molecular subclassifications of clear cell renal cell carcinoma and targeted therapy response. Eur Urol Focus 2(2):204–209CrossRefPubMed Ho TH, Choueiri TK, Wang K, et al. (2016) Correlation between molecular subclassifications of clear cell renal cell carcinoma and targeted therapy response. Eur Urol Focus 2(2):204–209CrossRefPubMed
42.
go back to reference Chaturvedi P, Singh AP, Chakraborty S, et al. (2008) MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res 68(7):2065–2070CrossRefPubMedPubMedCentral Chaturvedi P, Singh AP, Chakraborty S, et al. (2008) MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res 68(7):2065–2070CrossRefPubMedPubMedCentral
43.
go back to reference Ponnusamy MP, Singh AP, Jain M, et al. (2008) MUC4 activates HER2 signalling and enhances the motility of human ovarian cancer cells. Br J Cancer 99(3):520–526CrossRefPubMedPubMedCentral Ponnusamy MP, Singh AP, Jain M, et al. (2008) MUC4 activates HER2 signalling and enhances the motility of human ovarian cancer cells. Br J Cancer 99(3):520–526CrossRefPubMedPubMedCentral
44.
go back to reference Fu H, Liu Y, Xu L, et al. (2016) Low expression of mucin-4 predicts poor prognosis in patients with clear-cell renal cell carcinoma. Medicine 95(17):e3225CrossRefPubMedPubMedCentral Fu H, Liu Y, Xu L, et al. (2016) Low expression of mucin-4 predicts poor prognosis in patients with clear-cell renal cell carcinoma. Medicine 95(17):e3225CrossRefPubMedPubMedCentral
45.
go back to reference Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57(7):1083–1093CrossRefPubMed Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57(7):1083–1093CrossRefPubMed
46.
go back to reference Baker SJ, Fearon ER, Nigro JM, et al. (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244(4901):217–221CrossRefPubMed Baker SJ, Fearon ER, Nigro JM, et al. (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244(4901):217–221CrossRefPubMed
47.
go back to reference Santibáñez-Koref MF, Birch JM, Hartley AL, et al. (1991) p53 germline mutations in Li–Fraumeni syndrome. Lancet 338(8781):1490–1491CrossRefPubMed Santibáñez-Koref MF, Birch JM, Hartley AL, et al. (1991) p53 germline mutations in Li–Fraumeni syndrome. Lancet 338(8781):1490–1491CrossRefPubMed
48.
go back to reference Jamshidi N, Jonasch E, Zapala M, et al. (2015) The radiogenomic risk score: construction of a prognostic quantitative, noninvasive image-based molecular assay for renal cell carcinoma. Radiology 277(1):114–123CrossRefPubMed Jamshidi N, Jonasch E, Zapala M, et al. (2015) The radiogenomic risk score: construction of a prognostic quantitative, noninvasive image-based molecular assay for renal cell carcinoma. Radiology 277(1):114–123CrossRefPubMed
49.
go back to reference Jamshidi N, Jonasch E, Zapala M, et al. (2016) The radiogenomic risk score stratifies outcomes in a renal cell cancer phase 2 clinical trial. Eur Radiol 26(8):2798–2807CrossRefPubMed Jamshidi N, Jonasch E, Zapala M, et al. (2016) The radiogenomic risk score stratifies outcomes in a renal cell cancer phase 2 clinical trial. Eur Radiol 26(8):2798–2807CrossRefPubMed
50.
go back to reference Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12(8):862–866CrossRefPubMed Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12(8):862–866CrossRefPubMed
52.
go back to reference Lawrence MS, Stojanov P, Polak P, et al. (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRefPubMedPubMedCentral Lawrence MS, Stojanov P, Polak P, et al. (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRefPubMedPubMedCentral
53.
go back to reference O’Connor JPB, Rose CJ, Waterton JC, et al. (2014) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–257CrossRefPubMedPubMedCentral O’Connor JPB, Rose CJ, Waterton JC, et al. (2014) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–257CrossRefPubMedPubMedCentral
54.
go back to reference Kwiatkowski DJ, Choueiri TK, Fay AP, et al. (2016) Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin Cancer Res 22(10):2445–2452CrossRefPubMedPubMedCentral Kwiatkowski DJ, Choueiri TK, Fay AP, et al. (2016) Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin Cancer Res 22(10):2445–2452CrossRefPubMedPubMedCentral
55.
go back to reference Gevaert O, Mitchell LA, Achrol AS, et al. (2014) Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1):168–174CrossRefPubMed Gevaert O, Mitchell LA, Achrol AS, et al. (2014) Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1):168–174CrossRefPubMed
56.
go back to reference Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269CrossRefPubMed Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269CrossRefPubMed
57.
go back to reference Gámez-Pozo A, Antón-Aparicio LM, Bayona C, et al. (2012) MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia 14:1144–1152CrossRefPubMedPubMedCentral Gámez-Pozo A, Antón-Aparicio LM, Bayona C, et al. (2012) MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia 14:1144–1152CrossRefPubMedPubMedCentral
58.
go back to reference Khella HWZ, Daniel N, Youssef L, et al. (2017) miR-10b is a prognostic marker in clear cell renal cell carcinoma. J Clin Pathol 70(10):854–859CrossRefPubMed Khella HWZ, Daniel N, Youssef L, et al. (2017) miR-10b is a prognostic marker in clear cell renal cell carcinoma. J Clin Pathol 70(10):854–859CrossRefPubMed
59.
go back to reference Weiss GJ, Ganeshan B, Miles KA, et al. (2014) Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS ONE 9(7):e100244CrossRefPubMedPubMedCentral Weiss GJ, Ganeshan B, Miles KA, et al. (2014) Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS ONE 9(7):e100244CrossRefPubMedPubMedCentral
60.
go back to reference Miles KA, Ganeshan B, Hayball MP (2013) CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging 13(3):400–406CrossRefPubMedPubMedCentral Miles KA, Ganeshan B, Hayball MP (2013) CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging 13(3):400–406CrossRefPubMedPubMedCentral
61.
go back to reference Chee CG, Kim YH, Lee KH, et al. (2017) CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS ONE 12(8):e0182883CrossRefPubMedPubMedCentral Chee CG, Kim YH, Lee KH, et al. (2017) CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS ONE 12(8):e0182883CrossRefPubMedPubMedCentral
62.
go back to reference Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171CrossRefPubMed Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171CrossRefPubMed
63.
go back to reference Lubner MG, Stabo N, Abel EJ, Del Rio AM, Pickhardt PJ (2016) CT textural analysis of large primary renal cell carcinomas: pretreatment tumor heterogeneity correlates with histologic findings and clinical outcomes. AJR 207(1):96–105CrossRefPubMed Lubner MG, Stabo N, Abel EJ, Del Rio AM, Pickhardt PJ (2016) CT textural analysis of large primary renal cell carcinomas: pretreatment tumor heterogeneity correlates with histologic findings and clinical outcomes. AJR 207(1):96–105CrossRefPubMed
64.
go back to reference Haider MA, Vosough A, Khalvati F, et al. (2017) CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17:4CrossRefPubMedPubMedCentral Haider MA, Vosough A, Khalvati F, et al. (2017) CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17:4CrossRefPubMedPubMedCentral
65.
go back to reference Rios Velazquez E, Parmar C, Liu Y, et al. (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77(14):3922–3930CrossRefPubMed Rios Velazquez E, Parmar C, Liu Y, et al. (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77(14):3922–3930CrossRefPubMed
66.
go back to reference Yin Q, Hung S-C, Wang L, et al. (2017) Associations between tumor vascularity, vascular endothelial growth factor expression and PET/MRI radiomic signatures in primary clear-cell–renal-cell-carcinoma: proof-of-concept study. Sci Rep 7:43356CrossRefPubMedPubMedCentral Yin Q, Hung S-C, Wang L, et al. (2017) Associations between tumor vascularity, vascular endothelial growth factor expression and PET/MRI radiomic signatures in primary clear-cell–renal-cell-carcinoma: proof-of-concept study. Sci Rep 7:43356CrossRefPubMedPubMedCentral
68.
69.
go back to reference Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7:5467CrossRefPubMedPubMedCentral Li Z, Wang Y, Yu J, Guo Y, Cao W (2017) Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep 7:5467CrossRefPubMedPubMedCentral
70.
go back to reference Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636–1642CrossRefPubMed Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636–1642CrossRefPubMed
71.
go back to reference Aerts HJ, Velazquez ER, Leijenaar R, et al. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 3(5):4006CrossRef Aerts HJ, Velazquez ER, Leijenaar R, et al. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 3(5):4006CrossRef
73.
go back to reference Clark K, Vendt B, Smith K, et al. (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRefPubMedPubMedCentral Clark K, Vendt B, Smith K, et al. (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRefPubMedPubMedCentral
Metadata
Title
Radiogenomics in renal cell carcinoma
Authors
Francesco Alessandrino
Atul B. Shinagare
Dominick Bossé
Toni K. Choueiri
Katherine M. Krajewski
Publication date
01-06-2019
Publisher
Springer US
Published in
Abdominal Radiology / Issue 6/2019
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1624-y

Other articles of this Issue 6/2019

Abdominal Radiology 6/2019 Go to the issue