Skip to main content
Top
Published in: Abdominal Radiology 3/2018

01-03-2018

Quantitative MRI of kidneys in renal disease

Authors: Timothy L. Kline, Marie E. Edwards, Ishan Garg, Maria V. Irazabal, Panagiotis Korfiatis, Peter C. Harris, Bernard F. King, Vicente E. Torres, Sudhakar K. Venkatesh, Bradley J. Erickson

Published in: Abdominal Radiology | Issue 3/2018

Login to get access

Abstract

Purpose

To evaluate the reproducibility and utility of quantitative magnetic resonance imaging (MRI) sequences for the assessment of kidneys in young adults with normal renal function (eGFR ranged from 90 to 130 mL/min/1.73 m2) and patients with early renal disease (autosomal dominant polycystic kidney disease).

Materials and methods

This prospective case–control study was performed on ten normal young adults (18–30 years old) and ten age- and sex-matched patients with early renal parenchymal disease (autosomal dominant polycystic kidney disease). All subjects underwent a comprehensive kidney MRI protocol, including qualitative imaging: T1w, T2w, FIESTA, and quantitative imaging: 2D cine phase contrast of the renal arteries, and parenchymal diffusion weighted imaging (DWI), magnetization transfer imaging (MTI), blood oxygen level dependent (BOLD) imaging, and magnetic resonance elastography (MRE). The normal controls were imaged on two separate occasions ≥24 h apart (range 24–210 h) to assess reproducibility of the measurements.

Results

Quantitative MR imaging sequences were found to be reproducible. The mean ± SD absolute percent difference between quantitative parameters measured ≥24 h apart were: MTI-derived ratio = 4.5 ± 3.6%, DWI-derived apparent diffusion coefficient (ADC) = 6.5 ± 3.4%, BOLD-derived R2* = 7.4 ± 5.9%, and MRE-derived tissue stiffness = 7.6 ± 3.3%. Compared with controls, the ADPKD patient’s non-cystic renal parenchyma (NCRP) had statistically significant differences with regard to quantitative parenchymal measures: lower MTI percent ratios (16.3 ± 4.4 vs. 23.8 ± 1.2, p < 0.05), higher ADCs (2.46 ± 0.20 vs. 2.18 ± 0.10 × 10−3 mm2/s, p < 0.05), lower R2*s (14.9 ± 1.7 vs. 18.1 ± 1.6 s−1, p < 0.05), and lower tissue stiffness (3.2 ± 0.3 vs. 3.8 ± 0.5 kPa, p < 0.05).

Conclusion

Excellent reproducibility of the quantitative measurements was obtained in all cases. Significantly different quantitative MR parenchymal measurement parameters between ADPKD patients and normal controls were obtained by MT, DWI, BOLD, and MRE indicating the potential for detecting and following renal disease at an earlier stage than the conventional qualitative imaging techniques.
Literature
1.
go back to reference National Center for Health Statistics, Summary Health Statistics Tables for U.S. Adults: National Health Interview Survey, 2014, Table A-4b, A-4c. National Center for Health Statistics, Summary Health Statistics Tables for U.S. Adults: National Health Interview Survey, 2014, Table A-4b, A-4c.
2.
go back to reference National Center for Health Statistics, Deaths: Final Data for 2014, Tables 9, 10, 11. National Center for Health Statistics, Deaths: Final Data for 2014, Tables 9, 10, 11.
4.
go back to reference Myers GL, Miller WG, Coresh J, et al. (2006) Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the National Kidney Disease Education Program. Clin Chem 52:5–18CrossRefPubMed Myers GL, Miller WG, Coresh J, et al. (2006) Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the National Kidney Disease Education Program. Clin Chem 52:5–18CrossRefPubMed
5.
go back to reference Coresh J, Astor BC, McQuillan G, et al. (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929CrossRefPubMed Coresh J, Astor BC, McQuillan G, et al. (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929CrossRefPubMed
6.
go back to reference Zhang JL, Morrell G, Rusinek H, et al. (2014) New magnetic resonance imaging methods in nephrology. Kidney Int 85:768–778CrossRefPubMed Zhang JL, Morrell G, Rusinek H, et al. (2014) New magnetic resonance imaging methods in nephrology. Kidney Int 85:768–778CrossRefPubMed
7.
go back to reference Kajander S, Kallio T, Alanen A, Komu M, Forsstrom J (2000) Imaging end-stage kidney disease in adults. Low-field MR imaging with magnetization transfer vs. ultrasonography. Acta Radiol 41:357–360CrossRefPubMed Kajander S, Kallio T, Alanen A, Komu M, Forsstrom J (2000) Imaging end-stage kidney disease in adults. Low-field MR imaging with magnetization transfer vs. ultrasonography. Acta Radiol 41:357–360CrossRefPubMed
8.
go back to reference Ebrahimi B, Macura SI, Knudsen BE, Grande JP, Lerman LO (2013) Fibrosis detection in renal artery stenosis mouse model using magnetization transfer MRI. Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 867205 8672:867 Ebrahimi B, Macura SI, Knudsen BE, Grande JP, Lerman LO (2013) Fibrosis detection in renal artery stenosis mouse model using magnetization transfer MRI. Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, 867205 8672:867
9.
go back to reference Kline TL, Irazabal MV, Ebrahimi B, et al. (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466–1473CrossRefPubMed Kline TL, Irazabal MV, Ebrahimi B, et al. (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466–1473CrossRefPubMed
10.
go back to reference Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investig Radiol 43:40–48CrossRef Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investig Radiol 43:40–48CrossRef
12.
go back to reference Pedersen M, Dissing TH, Morkenborg J, et al. (2005) Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int 67:2305–2312CrossRefPubMed Pedersen M, Dissing TH, Morkenborg J, et al. (2005) Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int 67:2305–2312CrossRefPubMed
13.
go back to reference Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275CrossRefPubMed Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275CrossRefPubMed
14.
go back to reference Khatir DS, Pedersen M, Jespersen B, Buus NH (2014) Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging 40:1091–1098CrossRefPubMed Khatir DS, Pedersen M, Jespersen B, Buus NH (2014) Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging 40:1091–1098CrossRefPubMed
15.
go back to reference King BF, Torres VE, Brummer ME, et al. (2003) Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal-dominant polycystic kidney disease. Kidney Int 64:2214–2221CrossRefPubMed King BF, Torres VE, Brummer ME, et al. (2003) Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal-dominant polycystic kidney disease. Kidney Int 64:2214–2221CrossRefPubMed
16.
go back to reference Torres VE, King BF, Chapman AB, et al. (2007) Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2:112–120CrossRefPubMed Torres VE, King BF, Chapman AB, et al. (2007) Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2:112–120CrossRefPubMed
17.
go back to reference Karger N, Biederer J, Lusse S, et al. (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647CrossRefPubMed Karger N, Biederer J, Lusse S, et al. (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647CrossRefPubMed
18.
go back to reference Martirosian P, Boss A, Schraml C, et al. (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol I 37:S52–S64CrossRef Martirosian P, Boss A, Schraml C, et al. (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol I 37:S52–S64CrossRef
19.
go back to reference Warner L, Yin M, Glaser KJ, et al. (2011) Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46:509–514CrossRef Warner L, Yin M, Glaser KJ, et al. (2011) Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46:509–514CrossRef
20.
go back to reference Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65:927–935CrossRefPubMed Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65:927–935CrossRefPubMed
21.
go back to reference Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917CrossRefPubMed Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917CrossRefPubMed
22.
go back to reference Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol 46:285–291CrossRef Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol 46:285–291CrossRef
23.
go back to reference Wang F, Kopylov D, Zu Z, et al. (2015) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541CrossRefPubMedPubMedCentral Wang F, Kopylov D, Zu Z, et al. (2015) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541CrossRefPubMedPubMedCentral
24.
go back to reference Kline TL, Edwards ME, Korfiatis P, et al. (2016) Semiautomated segmentation of polycystic kidneys in T2-weighted MR images. Am J Roentgenol 207:605–613CrossRef Kline TL, Edwards ME, Korfiatis P, et al. (2016) Semiautomated segmentation of polycystic kidneys in T2-weighted MR images. Am J Roentgenol 207:605–613CrossRef
25.
go back to reference Altman DG, Bland JM (1983) Measurement in medicine—the analysis of method comparison studies. Statistician 32:307–317CrossRef Altman DG, Bland JM (1983) Measurement in medicine—the analysis of method comparison studies. Statistician 32:307–317CrossRef
26.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed
27.
go back to reference Sesso HD, Stampfer MJ, Rosner B, et al. (2000) Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 36:801–807CrossRefPubMed Sesso HD, Stampfer MJ, Rosner B, et al. (2000) Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 36:801–807CrossRefPubMed
28.
go back to reference Spiering W, Kroon AA, Fuss-Lejeune MM, Daemen MJ, de Leeuw PW (2000) Angiotensin II sensitivity is associated with the angiotensin II type 1 receptor A(1166)C polymorphism in essential hypertensives on a high sodium diet. Hypertension 36:411–416CrossRefPubMed Spiering W, Kroon AA, Fuss-Lejeune MM, Daemen MJ, de Leeuw PW (2000) Angiotensin II sensitivity is associated with the angiotensin II type 1 receptor A(1166)C polymorphism in essential hypertensives on a high sodium diet. Hypertension 36:411–416CrossRefPubMed
Metadata
Title
Quantitative MRI of kidneys in renal disease
Authors
Timothy L. Kline
Marie E. Edwards
Ishan Garg
Maria V. Irazabal
Panagiotis Korfiatis
Peter C. Harris
Bernard F. King
Vicente E. Torres
Sudhakar K. Venkatesh
Bradley J. Erickson
Publication date
01-03-2018
Publisher
Springer US
Published in
Abdominal Radiology / Issue 3/2018
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-017-1236-y

Other articles of this Issue 3/2018

Abdominal Radiology 3/2018 Go to the issue

Classics in Abdominal Imaging

The “windsock” sign