Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 13/2022

Open Access 29-07-2022 | Artificial Intelligence | Original Article

Artificial intelligence guided enhancement of digital PET: scans as fast as CT?

Authors: René Hosch, Manuel Weber, Miriam Sraieb, Nils Flaschel, Johannes Haubold, Moon-Sung Kim, Lale Umutlu, Jens Kleesiek, Ken Herrmann, Felix Nensa, Christoph Rischpler, Sven Koitka, Robert Seifert, David Kersting

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 13/2022

Login to get access

Abstract

Purpose

Both digital positron emission tomography (PET) detector technologies and artificial intelligence based image post-reconstruction methods allow to reduce the PET acquisition time while maintaining diagnostic quality. The aim of this study was to acquire ultra-low-count fluorodeoxyglucose (FDG) ExtremePET images on a digital PET/computed tomography (CT) scanner at an acquisition time comparable to a CT scan and to generate synthetic full-dose PET images using an artificial neural network.

Methods

This is a prospective, single-arm, single-center phase I/II imaging study. A total of 587 patients were included. For each patient, a standard and an ultra-low-count FDG PET/CT scan (whole-body acquisition time about 30 s) were acquired. A modified pix2pixHD deep-learning network was trained employing 387 data sets as training and 200 as test cohort. Three models (PET-only and PET/CT with or without group convolution) were compared. Detectability and quantification were evaluated.

Results

The PET/CT input model with group convolution performed best regarding lesion signal recovery and was selected for detailed evaluation. Synthetic PET images were of high visual image quality; mean absolute lesion SUVmax (maximum standardized uptake value) difference was 1.5. Patient-based sensitivity and specificity for lesion detection were 79% and 100%, respectively. Not-detected lesions were of lower tracer uptake and lesion volume. In a matched-pair comparison, patient-based (lesion-based) detection rate was 89% (78%) for PERCIST (PET response criteria in solid tumors)-measurable and 36% (22%) for non PERCIST-measurable lesions.

Conclusion

Lesion detectability and lesion quantification were promising in the context of extremely fast acquisition times. Possible application scenarios might include re-staging of late-stage cancer patients, in whom assessment of total tumor burden can be of higher relevance than detailed evaluation of small and low-uptake lesions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRef Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRef
2.
go back to reference Lasnon C, Coudrais N, Houdu B, Nganoa C, Salomon T, Enilorac B, et al. How fast can we scan patients with modern (digital) PET/CT systems? Eur J Radiol. 2020;129:109144.CrossRef Lasnon C, Coudrais N, Houdu B, Nganoa C, Salomon T, Enilorac B, et al. How fast can we scan patients with modern (digital) PET/CT systems? Eur J Radiol. 2020;129:109144.CrossRef
3.
go back to reference Van Sluis J, De Jong J, Schaar J, Noordzij W, Van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med Off Publ Soc Nucl Med United States. 2019;60:1031–6. Van Sluis J, De Jong J, Schaar J, Noordzij W, Van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med Off Publ Soc Nucl Med United States. 2019;60:1031–6.
4.
go back to reference Surti S, Viswanath V, Daube-Witherspoon ME, Conti M, Casey ME, Karp JS. Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:1684–90. Surti S, Viswanath V, Daube-Witherspoon ME, Conti M, Casey ME, Karp JS. Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:1684–90.
5.
go back to reference Koopman D, van Dalen JA, Stevens H, Slump CH, Knollema S, Jager PL. Performance of digital PET compared with high-resolution conventional PET in patients with cancer. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:1448–54. Koopman D, van Dalen JA, Stevens H, Slump CH, Knollema S, Jager PL. Performance of digital PET compared with high-resolution conventional PET in patients with cancer. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:1448–54.
6.
go back to reference van Sluis J, Boellaard R, Somasundaram A, van Snick PH, Borra RJH, Dierckx RAJO, et al. Image quality and semiquantitative measurements on the biograph vision PET/CT system: initial experiences and comparison with the biograph mCT. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:129–35. van Sluis J, Boellaard R, Somasundaram A, van Snick PH, Borra RJH, Dierckx RAJO, et al. Image quality and semiquantitative measurements on the biograph vision PET/CT system: initial experiences and comparison with the biograph mCT. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:129–35.
7.
go back to reference Kersting D, Jentzen W, Sraieb M, Costa PF, Conti M, Umutlu L, et al. Comparing lesion detection efficacy and image quality across different PET system generations to optimize the iodine-124 PET protocol for recurrent thyroid cancer. EJNMMI Phys. 2021;8:14.CrossRef Kersting D, Jentzen W, Sraieb M, Costa PF, Conti M, Umutlu L, et al. Comparing lesion detection efficacy and image quality across different PET system generations to optimize the iodine-124 PET protocol for recurrent thyroid cancer. EJNMMI Phys. 2021;8:14.CrossRef
8.
go back to reference López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46:1383–90.CrossRef López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46:1383–90.CrossRef
9.
go back to reference Alberts I, Prenosil G, Sachpekidis C, Weitzel T, Shi K, Rominger A, et al. Digital versus analogue PET in [(68)Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: a matched-pair comparison. Eur J Nucl Med Mol Imaging Germany. 2020;47:614–23.CrossRef Alberts I, Prenosil G, Sachpekidis C, Weitzel T, Shi K, Rominger A, et al. Digital versus analogue PET in [(68)Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: a matched-pair comparison. Eur J Nucl Med Mol Imaging Germany. 2020;47:614–23.CrossRef
10.
go back to reference Kersting D, Jentzen W, Fragoso Costa P, Sraieb M, Sandach P, Umutlu L, et al. Silicon-photomultiplier-based PET/CT reduces the minimum detectable activity of iodine-124. Sci Rep. 2021;11:17477.CrossRef Kersting D, Jentzen W, Fragoso Costa P, Sraieb M, Sandach P, Umutlu L, et al. Silicon-photomultiplier-based PET/CT reduces the minimum detectable activity of iodine-124. Sci Rep. 2021;11:17477.CrossRef
11.
go back to reference Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clin Transl Imaging. 2019;7:139–47.CrossRef Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clin Transl Imaging. 2019;7:139–47.CrossRef
12.
go back to reference Hatami S, Frye S, McMunn A, Botkin C, Muzaffar R, Christopher K, et al. Added value of digital over analog PET/CT: more significant as image field of view and body mass index increase. J Nucl Med Technol United States. 2020;48(354):360. Hatami S, Frye S, McMunn A, Botkin C, Muzaffar R, Christopher K, et al. Added value of digital over analog PET/CT: more significant as image field of view and body mass index increase. J Nucl Med Technol United States. 2020;48(354):360.
13.
go back to reference Weber M, Jentzen W, Hofferber R, Herrmann K, Fendler WP, Rischpler C, et al. Evaluation of (18)F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision. BMC Cancer. 2021;21:62.CrossRef Weber M, Jentzen W, Hofferber R, Herrmann K, Fendler WP, Rischpler C, et al. Evaluation of (18)F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision. BMC Cancer. 2021;21:62.CrossRef
15.
go back to reference Weber M, Jentzen W, Hofferber R, Herrmann K, Fendler WP, Conti M, et al. Evaluation of [(68)Ga]Ga-PSMA PET/CT images acquired with a reduced scan time duration in prostate cancer patients using the digital biograph vision. EJNMMI Res. 2021;11:21.CrossRef Weber M, Jentzen W, Hofferber R, Herrmann K, Fendler WP, Conti M, et al. Evaluation of [(68)Ga]Ga-PSMA PET/CT images acquired with a reduced scan time duration in prostate cancer patients using the digital biograph vision. EJNMMI Res. 2021;11:21.CrossRef
16.
go back to reference van Sluis J, Boellaard R, Dierckx RAJO, Stormezand GN, Glaudemans AWJM, Noordzij W. Image quality and activity optimization in oncologic (18)F-FDG PET using the digital biograph vision PET/CT system. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:764–71. van Sluis J, Boellaard R, Dierckx RAJO, Stormezand GN, Glaudemans AWJM, Noordzij W. Image quality and activity optimization in oncologic (18)F-FDG PET using the digital biograph vision PET/CT system. J Nucl Med Off Publ Soc Nucl Med United States. 2020;61:764–71.
17.
go back to reference Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph. 2019;79:101684.CrossRef Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph. 2019;79:101684.CrossRef
18.
go back to reference Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. ArXiv210505537 Cs Eess [Internet]. 2021 [cited 2021 Jun 15]; Available from: http://arxiv.org/abs/2105.05537 Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. ArXiv210505537 Cs Eess [Internet]. 2021 [cited 2021 Jun 15]; Available from: http://​arxiv.​org/​abs/​2105.​05537
19.
go back to reference Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging JMRI. 2018;48:330–40.CrossRef Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging JMRI. 2018;48:330–40.CrossRef
20.
go back to reference Haubold J, Hosch R, Umutlu L, Wetter A, Haubold P, Radbruch A, et al. Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network. Eur Radiol. 2021;31:6087–95.CrossRef Haubold J, Hosch R, Umutlu L, Wetter A, Haubold P, Radbruch A, et al. Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network. Eur Radiol. 2021;31:6087–95.CrossRef
21.
go back to reference Zhao J, Li D, Kassam Z, Howey J, Chong J, Chen B, et al. Tripartite-GAN: Synthesizing liver contrast-enhanced MRI to improve tumor detection. Med Image Anal. 2020;63:101667.CrossRef Zhao J, Li D, Kassam Z, Howey J, Chong J, Chen B, et al. Tripartite-GAN: Synthesizing liver contrast-enhanced MRI to improve tumor detection. Med Image Anal. 2020;63:101667.CrossRef
22.
go back to reference Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12:235–48.CrossRef Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12:235–48.CrossRef
24.
go back to reference Seibold C, Fink MA, Goos C, Kauczor H-U, Schlemmer H-P, Stiefelhagen R, et al. Prediction of low-kev monochromatic images from polyenergetic CT scans for improved automatic detection of pulmonary embolism. 2021 IEEE 18th Int Symp Biomed Imaging ISBI. 2021. p. 1017–20. Seibold C, Fink MA, Goos C, Kauczor H-U, Schlemmer H-P, Stiefelhagen R, et al. Prediction of low-kev monochromatic images from polyenergetic CT scans for improved automatic detection of pulmonary embolism. 2021 IEEE 18th Int Symp Biomed Imaging ISBI. 2021. p. 1017–20.
25.
go back to reference Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. IEEE Conf Comput Vis Pattern Recognit CVPR. 2017. p. 5967–76. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. IEEE Conf Comput Vis Pattern Recognit CVPR. 2017. p. 5967–76.
26.
go back to reference Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional gans. Proc IEEE Conf Comput Vis Pattern Recognit. 2018. p. 8798–807. Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional gans. Proc IEEE Conf Comput Vis Pattern Recognit. 2018. p. 8798–807.
27.
go back to reference Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.CrossRef Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.CrossRef
28.
go back to reference Chaudhari AS, Mittra E, Davidzon GA, Gulaka P, Gandhi H, Brown A, et al. Low-count whole-body PET with deep learning in a multicenter and externally validated study. NPJ Digit Med England. 2021;4:127.CrossRef Chaudhari AS, Mittra E, Davidzon GA, Gulaka P, Gandhi H, Brown A, et al. Low-count whole-body PET with deep learning in a multicenter and externally validated study. NPJ Digit Med England. 2021;4:127.CrossRef
29.
go back to reference Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol England. 2019;64:165019.CrossRef Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol England. 2019;64:165019.CrossRef
30.
go back to reference Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2019;38:675–85.CrossRef Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2019;38:675–85.CrossRef
31.
go back to reference Kang J, Gao Y, Shi F, Lalush DS, Lin W, Shen D. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images. Med Phys. 2015;42:5301–9.CrossRef Kang J, Gao Y, Shi F, Lalush DS, Lin W, Shen D. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images. Med Phys. 2015;42:5301–9.CrossRef
32.
go back to reference Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.CrossRef Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.CrossRef
33.
go back to reference Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space. J Nucl Med Off Publ Soc Nucl Med. 2020;61:1388–96. Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space. J Nucl Med Off Publ Soc Nucl Med. 2020;61:1388–96.
34.
go back to reference Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46:3555–64.CrossRef Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46:3555–64.CrossRef
35.
go back to reference Wang Y-RJ, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, Thakor AS, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021;48:2771–81. Wang Y-RJ, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, Thakor AS, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021;48:2771–81.
36.
go back to reference Nguyen NC, Kaushik A, Wolverson MK, Osman MM. Is there a common SUV threshold in oncological FDG PET/CT, at least for some common indications? A retrospective study. Acta Oncol Taylor & Francis. 2011;50:670–7.CrossRef Nguyen NC, Kaushik A, Wolverson MK, Osman MM. Is there a common SUV threshold in oncological FDG PET/CT, at least for some common indications? A retrospective study. Acta Oncol Taylor & Francis. 2011;50:670–7.CrossRef
37.
go back to reference Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM. 2010 20th Int Conf Pattern Recognit. 2010. 2366–9. Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM. 2010 20th Int Conf Pattern Recognit. 2010. 2366–9.
40.
go back to reference Ma L, Jia X, Sun Q, Schiele B, Tuytelaars T, Van Gool L. Pose guided person image generation. Adv Neural Inf Process Syst. 2017;30. Ma L, Jia X, Sun Q, Schiele B, Tuytelaars T, Van Gool L. Pose guided person image generation. Adv Neural Inf Process Syst. 2017;30.
41.
go back to reference Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology Radiological Society of North America. 2020;294:445–52. Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology Radiological Society of North America. 2020;294:445–52.
42.
go back to reference Weber M, Kersting D, Umutlu L, Schäfers M, Rischpler C, Fendler WP, et al. Just another “Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer. Eur J Nucl Med Mol Imaging. 2021;48:3141–50.CrossRef Weber M, Kersting D, Umutlu L, Schäfers M, Rischpler C, Fendler WP, et al. Just another “Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer. Eur J Nucl Med Mol Imaging. 2021;48:3141–50.CrossRef
43.
go back to reference O JH, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. Radiological Society of North America; 2016;280:576–84. O JH, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. Radiological Society of North America; 2016;280:576–84.
45.
go back to reference Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.CrossRef Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.CrossRef
46.
go back to reference Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64:215017.CrossRef Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64:215017.CrossRef
47.
go back to reference Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D Auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans Med Imaging. 2019;38:1328–39.CrossRef Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D Auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans Med Imaging. 2019;38:1328–39.CrossRef
48.
go back to reference Wang X, Zhou L, Wang Y, Jiang H, Ye H. Improved low-dose positron emission tomography image reconstruction using deep learned prior. Phys Med Biol IOP Publishing. 2021;66:115001.CrossRef Wang X, Zhou L, Wang Y, Jiang H, Ye H. Improved low-dose positron emission tomography image reconstruction using deep learned prior. Phys Med Biol IOP Publishing. 2021;66:115001.CrossRef
49.
go back to reference Kaplan S, Zhu Y-M. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging. 2019;32:773–8.CrossRef Kaplan S, Zhu Y-M. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging. 2019;32:773–8.CrossRef
50.
go back to reference de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med Off Publ Soc Nucl Med United States. 2012;53:701–8. de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med Off Publ Soc Nucl Med United States. 2012;53:701–8.
51.
go back to reference Schaefferkoetter J, Nai Y-H, Reilhac A, Townsend DW, Eriksson L, Conti M. Low dose positron emission tomography emulation from decimated high statistics: a clinical validation study. Med Phys John & Sons Wiley Ltd. 2019;46:2638–45. Schaefferkoetter J, Nai Y-H, Reilhac A, Townsend DW, Eriksson L, Conti M. Low dose positron emission tomography emulation from decimated high statistics: a clinical validation study. Med Phys John & Sons Wiley Ltd. 2019;46:2638–45.
52.
go back to reference Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE Int Conf Comput Vis ICCV. 2017. p. 2242–51. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE Int Conf Comput Vis ICCV. 2017. p. 2242–51.
Metadata
Title
Artificial intelligence guided enhancement of digital PET: scans as fast as CT?
Authors
René Hosch
Manuel Weber
Miriam Sraieb
Nils Flaschel
Johannes Haubold
Moon-Sung Kim
Lale Umutlu
Jens Kleesiek
Ken Herrmann
Felix Nensa
Christoph Rischpler
Sven Koitka
Robert Seifert
David Kersting
Publication date
29-07-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 13/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05901-x

Other articles of this Issue 13/2022

European Journal of Nuclear Medicine and Molecular Imaging 13/2022 Go to the issue