Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2022

Open Access 01-03-2022 | Glioma | Review Article

Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China

Authors: Zeyu Zhang, Kunshan He, Chongwei Chi, Zhenhua Hu, Jie Tian

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2022

Login to get access

Abstract

Purpose

China has the largest cancer population globally. Surgery is the main choice for most solid cancer patients. Intraoperative fluorescence molecular imaging (FMI) has shown its great potential in assisting surgeons in achieving precise resection. We summarized the typical applications of intraoperative FMI and several new trends to promote the development of precision surgery.

Methods

The academic database and NIH clinical trial platform were systematically evaluated. We focused on the clinical application of intraoperative FMI in China. Special emphasis was placed on a series of typical studies with new technologies or high-level evidence. The emerging strategy of combining FMI with other modalities was also discussed.

Results

The clinical applications of clinically approved indocyanine green (ICG), methylene blue (MB), or fluorescein are on the rise in different surgical departments. Intraoperative FMI has achieved precise lesion detection, sentinel lymph node mapping, and lymphangiography for many cancers. Nerve imaging is also exploring to reduce iatrogenic injuries. Through different administration routes, these fluorescent imaging agents provided encouraging results in surgical navigation. Meanwhile, designing new cancer-specific fluorescent tracers is expected to be a promising trend to further improve the surgical outcome.

Conclusions

Intraoperative FMI is in a rapid development in China. In-depth understanding of cancer-related molecular mechanisms is necessary to achieve precision surgery. Molecular-targeted fluorescent agents and multi-modal imaging techniques might play crucial roles in the era of precision surgery.
Literature
1.
go back to reference Mieog JSD, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg R-J, et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol. 2021;1:14. Mieog JSD, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg R-J, et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol. 2021;1:14.
2.
go back to reference Lauwerends LJ, van Driel PBAA, Baatenburg de Jong RJ, Hardillo JAU, Koljenovic S, Puppels G, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021;22:e186-95.PubMedCrossRef Lauwerends LJ, van Driel PBAA, Baatenburg de Jong RJ, Hardillo JAU, Koljenovic S, Puppels G, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021;22:e186-95.PubMedCrossRef
3.
go back to reference Tipirneni KE, Warram JM, Moore LS, Prince AC, de Boer E, Jani AH, et al. Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg. 2017;266:36–47.PubMedCrossRef Tipirneni KE, Warram JM, Moore LS, Prince AC, de Boer E, Jani AH, et al. Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg. 2017;266:36–47.PubMedCrossRef
4.
go back to reference Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4:1072–84.PubMedPubMedCentralCrossRef Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4:1072–84.PubMedPubMedCentralCrossRef
5.
go back to reference Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20:e354–67.PubMedCrossRef Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20:e354–67.PubMedCrossRef
6.
go back to reference Quan YH, Oh CH, Jung D, Lim J-Y, Choi BH, Rho J, et al. Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg American Medical Association. 2020;155:732–40. Quan YH, Oh CH, Jung D, Lim J-Y, Choi BH, Rho J, et al. Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg American Medical Association. 2020;155:732–40.
7.
go back to reference Lwin TM, Hoffman RM, Bouvet M. The future of tumour-specific fluorescence-guided surgery for pancreatic cancer. Lancet Gastroenterol Hepatol. 2020;5:715–7.PubMedCrossRef Lwin TM, Hoffman RM, Bouvet M. The future of tumour-specific fluorescence-guided surgery for pancreatic cancer. Lancet Gastroenterol Hepatol. 2020;5:715–7.PubMedCrossRef
8.
go back to reference Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol. 2017;14:347–64. Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol. 2017;14:347–64.
9.
go back to reference van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:2472. van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:2472.
10.
go back to reference Tipirneni KE, Rosenthal EL, Moore LS, Haskins AD, Udayakumar N, Jani AH, et al. Fluorescence imaging for cancer screening and surveillance. Mol Imaging Biol. 2017;19:645–55.PubMedCrossRef Tipirneni KE, Rosenthal EL, Moore LS, Haskins AD, Udayakumar N, Jani AH, et al. Fluorescence imaging for cancer screening and surveillance. Mol Imaging Biol. 2017;19:645–55.PubMedCrossRef
11.
go back to reference Achterberg FB, Deken MM, Meijer RPJ, Mieog JSD, Burggraaf J, van de Velde CJH, et al. Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery. Eur J Nucl Med Mol Imaging. 2021;48:332–9.PubMedCrossRef Achterberg FB, Deken MM, Meijer RPJ, Mieog JSD, Burggraaf J, van de Velde CJH, et al. Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery. Eur J Nucl Med Mol Imaging. 2021;48:332–9.PubMedCrossRef
13.
go back to reference Wang R, Pan Y, Li C, Zhang H, Garfield D, Li Y, et al. Analysis of major known driver mutations and prognosis in resected adenosquamous lung carcinomas. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9:760–8. Wang R, Pan Y, Li C, Zhang H, Garfield D, Li Y, et al. Analysis of major known driver mutations and prognosis in resected adenosquamous lung carcinomas. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9:760–8.
14.
go back to reference Cheng T-YD, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2016;11(1653):71. Cheng T-YD, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2016;11(1653):71.
15.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef
16.
go back to reference Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: new trends. J Hepatol Elsevier. 2020;72:250–61.CrossRef Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: new trends. J Hepatol Elsevier. 2020;72:250–61.CrossRef
17.
go back to reference Wang Q, Li X, Qian B, Hu K, Liu B. Fluorescence imaging in the surgical management of liver cancers: current status and future perspectives. Asian J Surg. 2021;S1015–9584(21):00567–74. Wang Q, Li X, Qian B, Hu K, Liu B. Fluorescence imaging in the surgical management of liver cancers: current status and future perspectives. Asian J Surg. 2021;S1015–9584(21):00567–74.
18.
go back to reference Zhang W, Hu Z, Tian J, Fang C. A narrative review of near-infrared fluorescence imaging in hepatectomy for hepatocellular carcinoma. Ann Transl Med. 2021;9:171.PubMedPubMedCentralCrossRef Zhang W, Hu Z, Tian J, Fang C. A narrative review of near-infrared fluorescence imaging in hepatectomy for hepatocellular carcinoma. Ann Transl Med. 2021;9:171.PubMedPubMedCentralCrossRef
19.
go back to reference Digital MAOCMA, Digital ISPCOCRH, Liver CPCOCMDA, Clinical PMPC, Medical IAEPCOCGS, Molecular IPCOCBS. Guidelines for application of computer-assisted indocyanine green molecular fluorescence imaging in diagnosis and surgical navigation of liver tumors (2019). Nan Fang Yi Ke Da Xue Xue Bao. 2019;39:1127–40. Digital MAOCMA, Digital ISPCOCRH, Liver CPCOCMDA, Clinical PMPC, Medical IAEPCOCGS, Molecular IPCOCBS. Guidelines for application of computer-assisted indocyanine green molecular fluorescence imaging in diagnosis and surgical navigation of liver tumors (2019). Nan Fang Yi Ke Da Xue Xue Bao. 2019;39:1127–40.
20.
go back to reference Li J, Li X, Zhang X, Wang H, Li K, He Y, et al. Indocyanine green fluorescence imaging-guided laparoscopic right posterior hepatectomy. Surg Endosc. 2021;36(2):1293–301.PubMedCrossRef Li J, Li X, Zhang X, Wang H, Li K, He Y, et al. Indocyanine green fluorescence imaging-guided laparoscopic right posterior hepatectomy. Surg Endosc. 2021;36(2):1293–301.PubMedCrossRef
21.
go back to reference Yang J, Tao H-S, Luo W, Chen R, Lin J-Y, Zhu W, et al. A novel method of fluorescent imaging can guide hepatectomy for intrahepatic cholangiocarcinoma with intrahepatic biliary obstruction. J Surg Oncol. 2020;122:1580–6.PubMedCrossRef Yang J, Tao H-S, Luo W, Chen R, Lin J-Y, Zhu W, et al. A novel method of fluorescent imaging can guide hepatectomy for intrahepatic cholangiocarcinoma with intrahepatic biliary obstruction. J Surg Oncol. 2020;122:1580–6.PubMedCrossRef
22.
go back to reference He K, Hong X, Chi C, Cai C, Wang K, Li P, et al. A new method of near-infrared fluorescence image-guided hepatectomy for patients with hepatolithiasis: a randomized controlled trial. Surg Endosc. 2020;34:4975–82.PubMedCrossRef He K, Hong X, Chi C, Cai C, Wang K, Li P, et al. A new method of near-infrared fluorescence image-guided hepatectomy for patients with hepatolithiasis: a randomized controlled trial. Surg Endosc. 2020;34:4975–82.PubMedCrossRef
23.
go back to reference He J, Zhen Z, Ye Q, Mo J, Chen G, Peng J. Laparoscopic anatomical segment VII resection for hepatocellular carcinoma using the Glissonian approach with indocyanine green dye fluorescence. J Gastrointest Surg. 2020;24:1228–9.PubMedCrossRef He J, Zhen Z, Ye Q, Mo J, Chen G, Peng J. Laparoscopic anatomical segment VII resection for hepatocellular carcinoma using the Glissonian approach with indocyanine green dye fluorescence. J Gastrointest Surg. 2020;24:1228–9.PubMedCrossRef
24.
go back to reference Li B, Liu T, Zhang Y, Zhang J. Retroperitoneal laparoscopic hepatectomy of recurrent hepatocellular carcinoma: case report and literature review. BMC Gastroenterol. 2020;20:278.PubMedPubMedCentralCrossRef Li B, Liu T, Zhang Y, Zhang J. Retroperitoneal laparoscopic hepatectomy of recurrent hepatocellular carcinoma: case report and literature review. BMC Gastroenterol. 2020;20:278.PubMedPubMedCentralCrossRef
25.
go back to reference Ishizawa T, Masuda K, Urano Y, Kawaguchi Y, Satou S, Kaneko J, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 2014;21:440–8.PubMedCrossRef Ishizawa T, Masuda K, Urano Y, Kawaguchi Y, Satou S, Kaneko J, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 2014;21:440–8.PubMedCrossRef
26.
go back to reference Zhang Y-M, Shi R, Hou J-C, Liu Z-R, Cui Z-L, Li Y, et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol. 2017;143:51–8.PubMedCrossRef Zhang Y-M, Shi R, Hou J-C, Liu Z-R, Cui Z-L, Li Y, et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol. 2017;143:51–8.PubMedCrossRef
27.
go back to reference Lu H, Gu J, Qian X-F, Dai X-Z. Indocyanine green fluorescence navigation in laparoscopic hepatectomy: a retrospective single-center study of 120 cases. Surg Today. 2021;51:695–702.PubMedCrossRef Lu H, Gu J, Qian X-F, Dai X-Z. Indocyanine green fluorescence navigation in laparoscopic hepatectomy: a retrospective single-center study of 120 cases. Surg Today. 2021;51:695–702.PubMedCrossRef
28.
go back to reference Li C-G, Zhou Z-P, Tan X-L, Wang Z-Z, Liu Q, Zhao Z-M. Robotic resection of liver focal nodal hyperplasia guided by indocyanine green fluorescence imaging: a preliminary analysis of 23 cases. World J Gastrointest Oncol. 2020;12:1407–15.PubMedPubMedCentralCrossRef Li C-G, Zhou Z-P, Tan X-L, Wang Z-Z, Liu Q, Zhao Z-M. Robotic resection of liver focal nodal hyperplasia guided by indocyanine green fluorescence imaging: a preliminary analysis of 23 cases. World J Gastrointest Oncol. 2020;12:1407–15.PubMedPubMedCentralCrossRef
29.
go back to reference Wang X, Teh CSC, Ishizawa T, Aoki T, Cavallucci D, Lee S-Y, et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann Surg. 2021;274:97–106.PubMedCrossRef Wang X, Teh CSC, Ishizawa T, Aoki T, Cavallucci D, Lee S-Y, et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann Surg. 2021;274:97–106.PubMedCrossRef
30.
go back to reference Zhang W, Zhu W, Yang J, Xiang N, Zeng N, Hu H, et al. Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: preliminary experience. Front Oncol. 2021;11:663236.PubMedPubMedCentralCrossRef Zhang W, Zhu W, Yang J, Xiang N, Zeng N, Hu H, et al. Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: preliminary experience. Front Oncol. 2021;11:663236.PubMedPubMedCentralCrossRef
31.
go back to reference Zhang P, Luo H, Zhu W, Yang J, Zeng N, Fan Y, et al. Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging. Surg Endosc. 2020;34:3449–59.PubMedCrossRef Zhang P, Luo H, Zhu W, Yang J, Zeng N, Fan Y, et al. Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging. Surg Endosc. 2020;34:3449–59.PubMedCrossRef
32.
go back to reference Yang J, Tao H-S, Cai W, Zhu W, Zhao D, Hu H-Y, et al. Accuracy of actual resected liver volume in anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. J Surg Oncol. 2018;118:1081–7.PubMedCrossRef Yang J, Tao H-S, Cai W, Zhu W, Zhao D, Hu H-Y, et al. Accuracy of actual resected liver volume in anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. J Surg Oncol. 2018;118:1081–7.PubMedCrossRef
33.
go back to reference Zheng J, Feng X, Cai J, Tao L, Liang X. Laparoscopic anatomical portal territory hepatectomy with cirrhosis by Takasaki’s approach and indocyanine green fluorescence navigation (with video). Ann Surg Oncol. 2020;27:5179–80.PubMedCrossRef Zheng J, Feng X, Cai J, Tao L, Liang X. Laparoscopic anatomical portal territory hepatectomy with cirrhosis by Takasaki’s approach and indocyanine green fluorescence navigation (with video). Ann Surg Oncol. 2020;27:5179–80.PubMedCrossRef
34.
go back to reference He K, Hong X, Chi C, Cai C, An Y, Li P, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial. J Am Coll Surg. 2022;234(2):130–7.PubMedCrossRef He K, Hong X, Chi C, Cai C, An Y, Li P, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial. J Am Coll Surg. 2022;234(2):130–7.PubMedCrossRef
35.
go back to reference Zhou J, Yang F, Jiang G, Wang J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J Thorac Dis. 2016;8:S738–43.PubMedPubMedCentralCrossRef Zhou J, Yang F, Jiang G, Wang J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J Thorac Dis. 2016;8:S738–43.PubMedPubMedCentralCrossRef
37.
go back to reference Matsuura Y, Ichinose J, Nakao M, Okumura S, Mun M. Recent fluorescence imaging technology applications of indocyanine green in general thoracic surgery. Surg Today. 2020;50:1332–42.PubMedCrossRef Matsuura Y, Ichinose J, Nakao M, Okumura S, Mun M. Recent fluorescence imaging technology applications of indocyanine green in general thoracic surgery. Surg Today. 2020;50:1332–42.PubMedCrossRef
38.
go back to reference Mao Y, Chi C, Yang F, Zhou J, He K, Li H, et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur J Cardiothorac Surg. 2017;52:1190–6.PubMedCrossRef Mao Y, Chi C, Yang F, Zhou J, He K, Li H, et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur J Cardiothorac Surg. 2017;52:1190–6.PubMedCrossRef
39.
go back to reference Li H, Zhou J, Chi C, Mao Y, Yang F, Tian J, et al. Clinical application of near-infrared thoracoscope with indocyanine green in video-assisted thoracoscopic bullectomy. J Thorac Dis. 2016;8:1841–5.PubMedPubMedCentralCrossRef Li H, Zhou J, Chi C, Mao Y, Yang F, Tian J, et al. Clinical application of near-infrared thoracoscope with indocyanine green in video-assisted thoracoscopic bullectomy. J Thorac Dis. 2016;8:1841–5.PubMedPubMedCentralCrossRef
40.
go back to reference Li H, Zhou J, Yang F, Wang J. Identifying interlobar fissure in a Craig grade 4 fissureless patient by near-infrared thoracoscopy. J Thorac Dis. 2018;10:E52–4.PubMedPubMedCentralCrossRef Li H, Zhou J, Yang F, Wang J. Identifying interlobar fissure in a Craig grade 4 fissureless patient by near-infrared thoracoscopy. J Thorac Dis. 2018;10:E52–4.PubMedPubMedCentralCrossRef
41.
go back to reference Xiang Y, Zhu X-P, Zhao J-N, Huang G-H, Tang J-H, Chen H-R, et al. Blood-brain barrier disruption, sodium fluorescein, and fluorescence-guided surgery of gliomas. Br J Neurosurg. 2018;32:141–8.PubMedCrossRef Xiang Y, Zhu X-P, Zhao J-N, Huang G-H, Tang J-H, Chen H-R, et al. Blood-brain barrier disruption, sodium fluorescein, and fluorescence-guided surgery of gliomas. Br J Neurosurg. 2018;32:141–8.PubMedCrossRef
42.
go back to reference Fan C, Jiang Y, Liu R, Wu G, Wu G, Xu K, et al. Safety and feasibility of low-dose fluorescein-guided resection of glioblastoma. Clin Neurol Neurosurg. 2018;175:57–60.PubMedCrossRef Fan C, Jiang Y, Liu R, Wu G, Wu G, Xu K, et al. Safety and feasibility of low-dose fluorescein-guided resection of glioblastoma. Clin Neurol Neurosurg. 2018;175:57–60.PubMedCrossRef
43.
go back to reference Lin F-H, Zhang X-H, Zhang J, He Z-Q, Duan H, Ke C, et al. Fluorescein sodium-guided biopsy or resection in primary central nervous system lymphomas with contrast-enhancing lesion in MRI. J Neurooncol. 2018;139:757–65.PubMedCrossRef Lin F-H, Zhang X-H, Zhang J, He Z-Q, Duan H, Ke C, et al. Fluorescein sodium-guided biopsy or resection in primary central nervous system lymphomas with contrast-enhancing lesion in MRI. J Neurooncol. 2018;139:757–65.PubMedCrossRef
44.
go back to reference Sun Z, Jing L, Fan Y, Zhang H, Chen L, Wang G, et al. Fluorescein-guided surgery for spinal gliomas: analysis of 220 consecutive cases. Int Rev Neurobiol. 2020;151:139–54.PubMedCrossRef Sun Z, Jing L, Fan Y, Zhang H, Chen L, Wang G, et al. Fluorescein-guided surgery for spinal gliomas: analysis of 220 consecutive cases. Int Rev Neurobiol. 2020;151:139–54.PubMedCrossRef
45.
go back to reference Xiao S-Y, Zhang J, Zhu Z-Q, Li Y-P, Zhong W-Y, Chen J-B, et al. Application of fluorescein sodium in breast cancer brain-metastasis surgery. Cancer Manag Res. 2018;10:4325–31.PubMedPubMedCentralCrossRef Xiao S-Y, Zhang J, Zhu Z-Q, Li Y-P, Zhong W-Y, Chen J-B, et al. Application of fluorescein sodium in breast cancer brain-metastasis surgery. Cancer Manag Res. 2018;10:4325–31.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang J, Al-Nahari F, Wang Z-F, Lin F-H, Zhao Y-Y, Xiao S-Y, et al. Application of fluorescein sodium in the resection of vermis pilocytic astrocytomas. World J Surg Oncol. 2017;15:46.PubMedPubMedCentralCrossRef Zhang J, Al-Nahari F, Wang Z-F, Lin F-H, Zhao Y-Y, Xiao S-Y, et al. Application of fluorescein sodium in the resection of vermis pilocytic astrocytomas. World J Surg Oncol. 2017;15:46.PubMedPubMedCentralCrossRef
47.
go back to reference Xue Z, Kong L, Pan C-C, Wu Z, Zhang J-T, Zhang L-W. Fluorescein-guided surgery for pediatric brainstem gliomas: preliminary study and technical notes. J Neurol Surg Part B Skull Base. 2018;79:S340–6.CrossRef Xue Z, Kong L, Pan C-C, Wu Z, Zhang J-T, Zhang L-W. Fluorescein-guided surgery for pediatric brainstem gliomas: preliminary study and technical notes. J Neurol Surg Part B Skull Base. 2018;79:S340–6.CrossRef
48.
go back to reference Chen Z-B, Zhu X-P, Zheng W, Xiang Y, Huang Y-K, Fang H-J, et al. Relationship between the sodium fluorescein yellow fluorescence boundary and the actual boundary of high-grade gliomas during surgical resection. Br J Neurosurg. 2021;1:8. Chen Z-B, Zhu X-P, Zheng W, Xiang Y, Huang Y-K, Fang H-J, et al. Relationship between the sodium fluorescein yellow fluorescence boundary and the actual boundary of high-grade gliomas during surgical resection. Br J Neurosurg. 2021;1:8.
49.
go back to reference Chan DTM, Yi-Pin Sonia H, Poon WS. 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J Surg. 2018;41:467–72.PubMedCrossRef Chan DTM, Yi-Pin Sonia H, Poon WS. 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J Surg. 2018;41:467–72.PubMedCrossRef
50.
go back to reference Peng X, Qian W, Hou J. 5-aminolevulinic acid (5-ALA) fluorescence-guided Mohs surgery resection of penile-scrotal extramammary Paget’s disease. Biosci Trends. 2017;11:595–9.PubMedCrossRef Peng X, Qian W, Hou J. 5-aminolevulinic acid (5-ALA) fluorescence-guided Mohs surgery resection of penile-scrotal extramammary Paget’s disease. Biosci Trends. 2017;11:595–9.PubMedCrossRef
51.
go back to reference Rozenholc A, Samouelian V, Warkus T, Gauthier P, Provencher D, Sauthier P, et al. Green versus blue: randomized controlled trial comparing indocyanine green with methylene blue for sentinel lymph node detection in endometrial cancer. Gynecol Oncol. 2019;153:500–4.PubMedCrossRef Rozenholc A, Samouelian V, Warkus T, Gauthier P, Provencher D, Sauthier P, et al. Green versus blue: randomized controlled trial comparing indocyanine green with methylene blue for sentinel lymph node detection in endometrial cancer. Gynecol Oncol. 2019;153:500–4.PubMedCrossRef
52.
go back to reference Agrawal SK, Hashlamoun I, Karki B, Sharma A, Arun I, Ahmed R. Diagnostic performance of indocyanine green plus methylene blue versus radioisotope plus methylene blue dye method for sentinel lymph node biopsy in node-negative early breast cancer. JCO Glob Oncol. 2020;6:1225–31.PubMedCrossRef Agrawal SK, Hashlamoun I, Karki B, Sharma A, Arun I, Ahmed R. Diagnostic performance of indocyanine green plus methylene blue versus radioisotope plus methylene blue dye method for sentinel lymph node biopsy in node-negative early breast cancer. JCO Glob Oncol. 2020;6:1225–31.PubMedCrossRef
53.
go back to reference Guo J, Yang H, Wang S, Cao Y, Liu M, Xie F, et al. Comparison of sentinel lymph node biopsy guided by indocyanine green, blue dye, and their combination in breast cancer patients: a prospective cohort study. World J Surg Oncol. 2017;15:196.PubMedPubMedCentralCrossRef Guo J, Yang H, Wang S, Cao Y, Liu M, Xie F, et al. Comparison of sentinel lymph node biopsy guided by indocyanine green, blue dye, and their combination in breast cancer patients: a prospective cohort study. World J Surg Oncol. 2017;15:196.PubMedPubMedCentralCrossRef
54.
go back to reference Zhang C, Jiang D, Huang B, Wang C, Zhao L, Xie X, et al. Methylene blue-based near-infrared fluorescence imaging for breast cancer visualization in resected human tissues. Technol Cancer Res Treat. 2019;18:1533033819894331.PubMedPubMedCentral Zhang C, Jiang D, Huang B, Wang C, Zhao L, Xie X, et al. Methylene blue-based near-infrared fluorescence imaging for breast cancer visualization in resected human tissues. Technol Cancer Res Treat. 2019;18:1533033819894331.PubMedPubMedCentral
55.
go back to reference Hu Z, Chen W-H, Tian J, Cheng Z. NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends Mol Med. 2020;26:469–82.PubMedCrossRef Hu Z, Chen W-H, Tian J, Cheng Z. NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends Mol Med. 2020;26:469–82.PubMedCrossRef
56.
go back to reference Blair S, Garcia M, Davis T, Zhu Z, Liang Z, Konopka C, et al. Hexachromatic bioinspired camera for image-guided cancer surgery. Sci Transl Med. 2021;13:eaaw7067.PubMedCrossRef Blair S, Garcia M, Davis T, Zhu Z, Liang Z, Konopka C, et al. Hexachromatic bioinspired camera for image-guided cancer surgery. Sci Transl Med. 2021;13:eaaw7067.PubMedCrossRef
57.
go back to reference Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A. Annapragada A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. Plos One. 2017;12:e0187563.PubMedPubMedCentralCrossRef Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A. Annapragada A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. Plos One. 2017;12:e0187563.PubMedPubMedCentralCrossRef
58.
go back to reference Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater. 2018;9:e1802546.CrossRef Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater. 2018;9:e1802546.CrossRef
59.
go back to reference Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci. 2018;115:4465–70.PubMedPubMedCentralCrossRef Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci. 2018;115:4465–70.PubMedPubMedCentralCrossRef
60.
go back to reference Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–71.PubMedCrossRef Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–71.PubMedCrossRef
62.
go back to reference Shen B, Zhang Z, Shi X, Cao C, Zhang Z, Hu Z, et al. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. Eur J Nucl Med Mol Imaging. 2021;48:3482–92.PubMedPubMedCentralCrossRef Shen B, Zhang Z, Shi X, Cao C, Zhang Z, Hu Z, et al. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. Eur J Nucl Med Mol Imaging. 2021;48:3482–92.PubMedPubMedCentralCrossRef
63.
go back to reference Cao C, Deng S, Wang B, Shi X, Ge L, Qiu M, et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses. Clin Transl Med. 2021;11:e604.PubMedPubMedCentral Cao C, Deng S, Wang B, Shi X, Ge L, Qiu M, et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses. Clin Transl Med. 2021;11:e604.PubMedPubMedCentral
64.
go back to reference Huang Y, Liang C, He L, Tian J, Liang C, Chen X, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34:2157–64.PubMedCrossRef Huang Y, Liang C, He L, Tian J, Liang C, Chen X, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34:2157–64.PubMedCrossRef
65.
go back to reference Kim MJ, Park SC, Park JW, Chang HJ, Kim DY, Nam B-H, et al. Robot-assisted versus laparoscopic surgery for rectal cancer: a phase II open label prospective randomized controlled trial. Ann Surg. 2018;267:243–51.PubMedCrossRef Kim MJ, Park SC, Park JW, Chang HJ, Kim DY, Nam B-H, et al. Robot-assisted versus laparoscopic surgery for rectal cancer: a phase II open label prospective randomized controlled trial. Ann Surg. 2018;267:243–51.PubMedCrossRef
66.
go back to reference Xia C, Zhou Q, Zhang Q, Hu S, Meacci E, Matsuura Y, et al. Comparative study on the diagnostic value of intravenous/peritumoral injection of indocyanine green for metastatic lymph node location in patients with head and neck squamous cell carcinoma (HNSCC). Ann Transl Med. 2021;9:507.PubMedPubMedCentralCrossRef Xia C, Zhou Q, Zhang Q, Hu S, Meacci E, Matsuura Y, et al. Comparative study on the diagnostic value of intravenous/peritumoral injection of indocyanine green for metastatic lymph node location in patients with head and neck squamous cell carcinoma (HNSCC). Ann Transl Med. 2021;9:507.PubMedPubMedCentralCrossRef
67.
go back to reference Okubo K, Uenosono Y, Arigami T, Matsushita D, Yanagita S, Kijima T, et al. Quantitative assessment of fluorescence intensity of ICG in sentinel nodes in early gastric cancer. Gastric Cancer. 2018;21:776–81.PubMedCrossRef Okubo K, Uenosono Y, Arigami T, Matsushita D, Yanagita S, Kijima T, et al. Quantitative assessment of fluorescence intensity of ICG in sentinel nodes in early gastric cancer. Gastric Cancer. 2018;21:776–81.PubMedCrossRef
68.
go back to reference Zhang C, Li Y, Wang X, Zhang M, Jiang W, Ou J. Clinical study of combined application of indocyanine green and methylene blue for sentinel lymph node biopsy in breast cancer. Medicine (Baltimore). 2021;100:e25365.CrossRef Zhang C, Li Y, Wang X, Zhang M, Jiang W, Ou J. Clinical study of combined application of indocyanine green and methylene blue for sentinel lymph node biopsy in breast cancer. Medicine (Baltimore). 2021;100:e25365.CrossRef
69.
go back to reference Wang Y, Zhu L, Xia W, Wang F. Anatomy of lymphatic drainage of the esophagus and lymph node metastasis of thoracic esophageal cancer. Cancer Manag Res. 2018;10:6295–303.PubMedPubMedCentralCrossRef Wang Y, Zhu L, Xia W, Wang F. Anatomy of lymphatic drainage of the esophagus and lymph node metastasis of thoracic esophageal cancer. Cancer Manag Res. 2018;10:6295–303.PubMedPubMedCentralCrossRef
70.
go back to reference Roh CK, Choi S, Seo WJ, Cho M, Son T, Kim H-I, et al. Indocyanine green fluorescence lymphography during gastrectomy after initial endoscopic submucosal dissection for early gastric cancer. Br J Surg. 2020;107:712–9.PubMedCrossRef Roh CK, Choi S, Seo WJ, Cho M, Son T, Kim H-I, et al. Indocyanine green fluorescence lymphography during gastrectomy after initial endoscopic submucosal dissection for early gastric cancer. Br J Surg. 2020;107:712–9.PubMedCrossRef
71.
go back to reference Zapardiel I, Alvarez J, Barahona M, Barri P, Boldo A, Bresco P, et al. Utility of intraoperative fluorescence imaging in gynecologic surgery: systematic review and consensus statement. Ann Surg Oncol. 2021;28:3266–78.PubMedCrossRef Zapardiel I, Alvarez J, Barahona M, Barri P, Boldo A, Bresco P, et al. Utility of intraoperative fluorescence imaging in gynecologic surgery: systematic review and consensus statement. Ann Surg Oncol. 2021;28:3266–78.PubMedCrossRef
73.
go back to reference Chen Q-Y, Xie J-W, Zhong Q, Wang J-B, Lin J-X, Lu J, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg. 2020;155:300–11.PubMedCrossRef Chen Q-Y, Xie J-W, Zhong Q, Wang J-B, Lin J-X, Lu J, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg. 2020;155:300–11.PubMedCrossRef
74.
go back to reference Chen Q-Y, Zhong Q, Li P, Xie J-W, Liu Z-Y, Huang X-B, et al. Comparison of submucosal and subserosal approaches toward optimized indocyanine green tracer-guided laparoscopic lymphadenectomy for patients with gastric cancer (FUGES-019): a randomized controlled trial. BMC Med. 2021;19:276.PubMedPubMedCentralCrossRef Chen Q-Y, Zhong Q, Li P, Xie J-W, Liu Z-Y, Huang X-B, et al. Comparison of submucosal and subserosal approaches toward optimized indocyanine green tracer-guided laparoscopic lymphadenectomy for patients with gastric cancer (FUGES-019): a randomized controlled trial. BMC Med. 2021;19:276.PubMedPubMedCentralCrossRef
75.
go back to reference Huang Z-N, Yan S, Qiu WW, Liu CH, Chen QY, Zheng CH, et al. Assessment of indocyanine green tracer-guided lymphadenectomy in laparoscopic gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer: results from a multicenter analysis based on propensity matching. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2021;24(1355):64. Huang Z-N, Yan S, Qiu WW, Liu CH, Chen QY, Zheng CH, et al. Assessment of indocyanine green tracer-guided lymphadenectomy in laparoscopic gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer: results from a multicenter analysis based on propensity matching. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2021;24(1355):64.
76.
go back to reference Zhong Q, Chen Q-Y, Huang X-B, Lin G-T, Liu Z-Y, Chen J-Y, et al. Clinical implications of indocyanine green fluorescence imaging-guided laparoscopic lymphadenectomy for patients with gastric cancer: a cohort study from two randomized, controlled trials using individual patient data. Int J Surg Lond Engl. 2021;94:106120.CrossRef Zhong Q, Chen Q-Y, Huang X-B, Lin G-T, Liu Z-Y, Chen J-Y, et al. Clinical implications of indocyanine green fluorescence imaging-guided laparoscopic lymphadenectomy for patients with gastric cancer: a cohort study from two randomized, controlled trials using individual patient data. Int J Surg Lond Engl. 2021;94:106120.CrossRef
78.
go back to reference Lu G, van den Berg NS, Martin BA, Nishio N, Hart ZP, van Keulen S, et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: a phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol Hepatol. 2020;5:753–64.PubMedPubMedCentralCrossRef Lu G, van den Berg NS, Martin BA, Nishio N, Hart ZP, van Keulen S, et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: a phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol Hepatol. 2020;5:753–64.PubMedPubMedCentralCrossRef
79.
go back to reference Wang P, Fang C, Lin H-M, Li X-J, Luo D, Gan Y, et al. Detection of the common bile duct in difficult bile duct exploration using indocyanine green fluorescence imaging: a case report. Photodiagnosis Photodyn Ther. 2021;36:102610.PubMedCrossRef Wang P, Fang C, Lin H-M, Li X-J, Luo D, Gan Y, et al. Detection of the common bile duct in difficult bile duct exploration using indocyanine green fluorescence imaging: a case report. Photodiagnosis Photodyn Ther. 2021;36:102610.PubMedCrossRef
80.
go back to reference Chen Q, Zhou R, Weng J, Lai Y, Liu H, Kuang J, et al. Extrahepatic biliary tract visualization using near-infrared fluorescence imaging with indocyanine green: optimization of dose and dosing time. Surg Endosc. 2021;35:5573–82.PubMedCrossRef Chen Q, Zhou R, Weng J, Lai Y, Liu H, Kuang J, et al. Extrahepatic biliary tract visualization using near-infrared fluorescence imaging with indocyanine green: optimization of dose and dosing time. Surg Endosc. 2021;35:5573–82.PubMedCrossRef
81.
go back to reference Meng X, Wang H, Xu Y, Chen M, Duan W, Lu S. Indocyanine green fluorescence image-guided total laparoscopic living donor right hepatectomy: the first case report from Mainland China. Int J Surg Case Rep. 2018;53:406–9.PubMedPubMedCentralCrossRef Meng X, Wang H, Xu Y, Chen M, Duan W, Lu S. Indocyanine green fluorescence image-guided total laparoscopic living donor right hepatectomy: the first case report from Mainland China. Int J Surg Case Rep. 2018;53:406–9.PubMedPubMedCentralCrossRef
82.
go back to reference Li H, Zhu Z, Wei L, Tan Y, Zeng Z, Qu W, et al. Laparoscopic left lateral monosegmentectomy in pediatric living donor liver transplantation using real-time ICG fluorescence in situ reduction. J Gastrointest Surg. 2020;24:2185–6.PubMedCrossRef Li H, Zhu Z, Wei L, Tan Y, Zeng Z, Qu W, et al. Laparoscopic left lateral monosegmentectomy in pediatric living donor liver transplantation using real-time ICG fluorescence in situ reduction. J Gastrointest Surg. 2020;24:2185–6.PubMedCrossRef
83.
go back to reference Yang F, Zhou J, Li H, Yang F, Xiao R, Chi C, et al. Near-infrared fluorescence-guided thoracoscopic surgical intervention for postoperative chylothorax. Interact Cardiovasc Thorac Surg. 2018;26:171–5.PubMedCrossRef Yang F, Zhou J, Li H, Yang F, Xiao R, Chi C, et al. Near-infrared fluorescence-guided thoracoscopic surgical intervention for postoperative chylothorax. Interact Cardiovasc Thorac Surg. 2018;26:171–5.PubMedCrossRef
84.
go back to reference Ye Z-P, Yang X-Y, Li W-S, Hou B, Guo Y. Microsurgical resection of cervical spinal cord arteriovenous malformations: report of 6 cases. World Neurosurg. 2016;96:362–9.PubMedCrossRef Ye Z-P, Yang X-Y, Li W-S, Hou B, Guo Y. Microsurgical resection of cervical spinal cord arteriovenous malformations: report of 6 cases. World Neurosurg. 2016;96:362–9.PubMedCrossRef
85.
go back to reference Zhou N, Xu X, Wei W. Analysis of clinical features of RPE adenoma. Graefes Arch Clin Exp Ophthalmol. 2020;258:2831–40.PubMedCrossRef Zhou N, Xu X, Wei W. Analysis of clinical features of RPE adenoma. Graefes Arch Clin Exp Ophthalmol. 2020;258:2831–40.PubMedCrossRef
86.
go back to reference Liu J, Pan L, Shang C, Lu B, Wu R, Feng Y, et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci Adv. 2020;6(16):eaax9757. Liu J, Pan L, Shang C, Lu B, Wu R, Feng Y, et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci Adv. 2020;6(16):eaax9757.
87.
go back to reference Wang LG, Barth CW, Kitts CH, Mebrat MD, Montaño AR, House BJ, et al. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med. 2020;12:eaay0712.PubMedCrossRef Wang LG, Barth CW, Kitts CH, Mebrat MD, Montaño AR, House BJ, et al. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med. 2020;12:eaay0712.PubMedCrossRef
88.
go back to reference Monje M, Borniger JC, D’Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;181:219–22.PubMedPubMedCentralCrossRef Monje M, Borniger JC, D’Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;181:219–22.PubMedPubMedCentralCrossRef
89.
go back to reference Walsh EM, Cole D, Tipirneni KE, Bland KI, Udayakumar N, Kasten BB, et al. Fluorescence imaging of nerves during surgery. Ann Surg. 2019;270:69–76.PubMedCrossRef Walsh EM, Cole D, Tipirneni KE, Bland KI, Udayakumar N, Kasten BB, et al. Fluorescence imaging of nerves during surgery. Ann Surg. 2019;270:69–76.PubMedCrossRef
90.
go back to reference Weng W, Liu Y, Zhou J, Li H, Yang F, Jiang G, et al. Thoracoscopic indocyanine green near-infrared fluorescence for thoracic sympathetic ganglions. Ann Thorac Surg Elsevier. 2016;101:2394.CrossRef Weng W, Liu Y, Zhou J, Li H, Yang F, Jiang G, et al. Thoracoscopic indocyanine green near-infrared fluorescence for thoracic sympathetic ganglions. Ann Thorac Surg Elsevier. 2016;101:2394.CrossRef
91.
go back to reference He K, Zhou J, Yang F, Chi C, Li H, Mao Y, et al. Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics. 2018;8:304–13.PubMedPubMedCentralCrossRef He K, Zhou J, Yang F, Chi C, Li H, Mao Y, et al. Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics. 2018;8:304–13.PubMedPubMedCentralCrossRef
92.
go back to reference Pei G, Liu Y, Liu Q, Min X, Yang Y, Wang S, et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac Cancer. 2020;11:943–9.PubMedPubMedCentralCrossRef Pei G, Liu Y, Liu Q, Min X, Yang Y, Wang S, et al. The safety and feasibility of intraoperative near-infrared fluorescence imaging with indocyanine green in thoracoscopic sympathectomy for primary palmar hyperhidrosis. Thorac Cancer. 2020;11:943–9.PubMedPubMedCentralCrossRef
94.
go back to reference Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology. Vis Comput Ind Biomed Art. 2020;3(1):24.PubMedPubMedCentralCrossRef Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology. Vis Comput Ind Biomed Art. 2020;3(1):24.PubMedPubMedCentralCrossRef
96.
go back to reference Kang F, Han Q, Zhou X, Zheng Z, Wang S, Ma W, et al. Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. Eur J Nucl Med Mol Imaging. 2020;47:3107–17.PubMedCrossRef Kang F, Han Q, Zhou X, Zheng Z, Wang S, Ma W, et al. Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. Eur J Nucl Med Mol Imaging. 2020;47:3107–17.PubMedCrossRef
97.
go back to reference Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 2020;47:1820–32.PubMedCrossRef Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 2020;47:1820–32.PubMedCrossRef
98.
go back to reference Li X, Rosenkrans ZT, Wang J, Cai W. PET imaging of macrophages in cardiovascular diseases. Am J Transl Res. 2020;12:1491–514.PubMedPubMedCentral Li X, Rosenkrans ZT, Wang J, Cai W. PET imaging of macrophages in cardiovascular diseases. Am J Transl Res. 2020;12:1491–514.PubMedPubMedCentral
99.
go back to reference Sun X, Xiao Z, Chen G, Han Z, Liu Y, Zhang C, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med. 2018;10:eaan8840.PubMedCrossRef Sun X, Xiao Z, Chen G, Han Z, Liu Y, Zhang C, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med. 2018;10:eaan8840.PubMedCrossRef
100.
go back to reference Guo W, Pang Y, Yao L, Zhao L, Fan C, Ke J, et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48:1604–17.PubMedCrossRef Guo W, Pang Y, Yao L, Zhao L, Fan C, Ke J, et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48:1604–17.PubMedCrossRef
101.
go back to reference Long T, Hou J, Yang N, Zhou M, Li Y, Li J, et al. Utility of 18F-AlF-NOTA-octreotide PET/CT in the localization of tumor-induced osteomalacia. J Clin Endocrinol Metab. 2021;106:e4202–9.PubMedCrossRef Long T, Hou J, Yang N, Zhou M, Li Y, Li J, et al. Utility of 18F-AlF-NOTA-octreotide PET/CT in the localization of tumor-induced osteomalacia. J Clin Endocrinol Metab. 2021;106:e4202–9.PubMedCrossRef
102.
go back to reference Luo Y, Pan Q, Yang H, Peng L, Zhang W, Li F. Fibroblast activation protein–targeted PET/CT with 68Ga-FAPI for imaging IgG4-related disease: comparison to 18F-FDG PET/CT. J Nucl Med. 2021;62(2):266–71.PubMedCrossRef Luo Y, Pan Q, Yang H, Peng L, Zhang W, Li F. Fibroblast activation protein–targeted PET/CT with 68Ga-FAPI for imaging IgG4-related disease: comparison to 18F-FDG PET/CT. J Nucl Med. 2021;62(2):266–71.PubMedCrossRef
103.
go back to reference Ding J, Zhang Y, Wen J, Zhang H, Wang H, Luo Y, et al. Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. Eur J Nucl Med Mol Imaging. 2020;47:2656–65.PubMedCrossRef Ding J, Zhang Y, Wen J, Zhang H, Wang H, Luo Y, et al. Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. Eur J Nucl Med Mol Imaging. 2020;47:2656–65.PubMedCrossRef
104.
go back to reference Kang F, Wang Z, Li G, Wang S, Liu D, Zhang M, et al. Inter-heterogeneity and intra-heterogeneity of αvβ3 in non-small cell lung cancer and small cell lung cancer patients as revealed by 68Ga-RGD2 PET imaging. Eur J Nucl Med Mol Imaging. 2017;44:1520–8.PubMedCrossRef Kang F, Wang Z, Li G, Wang S, Liu D, Zhang M, et al. Inter-heterogeneity and intra-heterogeneity of αvβ3 in non-small cell lung cancer and small cell lung cancer patients as revealed by 68Ga-RGD2 PET imaging. Eur J Nucl Med Mol Imaging. 2017;44:1520–8.PubMedCrossRef
105.
go back to reference Kang F, Mu W, Gong J, Wang S, Li G, Li G, et al. Integrating manual diagnosis into radiomics for reducing the false positive rate of 18F-FDG PET/CT diagnosis in patients with suspected lung cancer. Eur J Nucl Med Mol Imaging. 2019;46:2770–9.PubMedCrossRef Kang F, Mu W, Gong J, Wang S, Li G, Li G, et al. Integrating manual diagnosis into radiomics for reducing the false positive rate of 18F-FDG PET/CT diagnosis in patients with suspected lung cancer. Eur J Nucl Med Mol Imaging. 2019;46:2770–9.PubMedCrossRef
106.
go back to reference Zhang J, Tian Y, Li D, Niu G, Lang L, Li F, et al. 68Ga-NOTA-Aca-BBN(7–14) PET imaging of GRPR in children with optic pathway glioma. Eur J Nucl Med Mol Imaging. 2019;46:2152–62.PubMedCrossRef Zhang J, Tian Y, Li D, Niu G, Lang L, Li F, et al. 68Ga-NOTA-Aca-BBN(7–14) PET imaging of GRPR in children with optic pathway glioma. Eur J Nucl Med Mol Imaging. 2019;46:2152–62.PubMedCrossRef
107.
go back to reference Zhang J, Shao S, Wu P, Liu D, Yang B, Han D, et al. Diagnostic performance of 68Ga-PSMA PET/CT in the detection of prostate cancer prior to initial biopsy: comparison with cancer-predicting nomograms. Eur J Nucl Med Mol Imaging. 2019;46:908–20.PubMedCrossRef Zhang J, Shao S, Wu P, Liu D, Yang B, Han D, et al. Diagnostic performance of 68Ga-PSMA PET/CT in the detection of prostate cancer prior to initial biopsy: comparison with cancer-predicting nomograms. Eur J Nucl Med Mol Imaging. 2019;46:908–20.PubMedCrossRef
108.
go back to reference Liu C, Liu T, Zhang Z, Zhang N, Du P, Yang Y, et al. 68Ga-PSMA PET/CT combined with PET/ultrasound-guided prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsy results. J Nucl Med. 2020;61(9):1314–9.PubMedPubMedCentralCrossRef Liu C, Liu T, Zhang Z, Zhang N, Du P, Yang Y, et al. 68Ga-PSMA PET/CT combined with PET/ultrasound-guided prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsy results. J Nucl Med. 2020;61(9):1314–9.PubMedPubMedCentralCrossRef
109.
go back to reference Liu C, Liu T, Zhang N, Liu Y, Li N, Du P, et al. 68Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2018;45:1852–61.PubMedCrossRef Liu C, Liu T, Zhang N, Liu Y, Li N, Du P, et al. 68Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2018;45:1852–61.PubMedCrossRef
110.
go back to reference Wang B, Liu C, Wei Y, Meng J, Zhang Y, Gan H, et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26:4551–8.CrossRef Wang B, Liu C, Wei Y, Meng J, Zhang Y, Gan H, et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26:4551–8.CrossRef
111.
go back to reference Ma X, Wang S, Wang S, Liu D, Zhao X, Chen H, et al. Biodistribution, radiation dosimetry, and clinical application of a melanin-targeted PET probe, 18F–P3BZA, in Patients. J Nucl Med. 2019;60(1):16–22.PubMedCrossRef Ma X, Wang S, Wang S, Liu D, Zhao X, Chen H, et al. Biodistribution, radiation dosimetry, and clinical application of a melanin-targeted PET probe, 18F–P3BZA, in Patients. J Nucl Med. 2019;60(1):16–22.PubMedCrossRef
113.
go back to reference Zhang Z, Cai M, Bao C, Hu Z, Tian J. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. Nanomed Nanotechnol. 2019;17:62–70.CrossRef Zhang Z, Cai M, Bao C, Hu Z, Tian J. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. Nanomed Nanotechnol. 2019;17:62–70.CrossRef
114.
go back to reference Zhang Z, Cai M, Gao Y, Shi X, Zhang X, Hu Z, et al. A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network. Phys Med Biol. 2019;64:245010.PubMedCrossRef Zhang Z, Cai M, Gao Y, Shi X, Zhang X, Hu Z, et al. A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network. Phys Med Biol. 2019;64:245010.PubMedCrossRef
115.
go back to reference Thorek DLJ, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55:95–8.PubMedCrossRef Thorek DLJ, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55:95–8.PubMedCrossRef
116.
go back to reference Lee HJ, Ehlerding EB, Jiang D, Barnhart TE, Cao T, Wei W, et al. Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection. Am J Cancer Res. 2019;9:1454–68.PubMedPubMedCentral Lee HJ, Ehlerding EB, Jiang D, Barnhart TE, Cao T, Wei W, et al. Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection. Am J Cancer Res. 2019;9:1454–68.PubMedPubMedCentral
117.
go back to reference Li M, Wei W, Barnhart TE, Jiang D, Cao T, Fan K, et al. ImmunoPET/NIRF/Cerenkov multimodality imaging of ICAM-1 in pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2021;48:2737–48.PubMedCrossRef Li M, Wei W, Barnhart TE, Jiang D, Cao T, Fan K, et al. ImmunoPET/NIRF/Cerenkov multimodality imaging of ICAM-1 in pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2021;48:2737–48.PubMedCrossRef
118.
go back to reference Shi X, Cao C, Zhang Z, Tian J, Hu Z. Radiopharmaceutical and Eu3+ doped gadolinium oxide nanoparticles mediated triple-excited fluorescence imaging and image-guided surgery. J Nanobiotechnology. 2021;19:212.PubMedPubMedCentralCrossRef Shi X, Cao C, Zhang Z, Tian J, Hu Z. Radiopharmaceutical and Eu3+ doped gadolinium oxide nanoparticles mediated triple-excited fluorescence imaging and image-guided surgery. J Nanobiotechnology. 2021;19:212.PubMedPubMedCentralCrossRef
119.
go back to reference Yu B, Ni D, Rosenkrans ZT, Barnhart TE, Wei H, Ferreira CA, et al. A “missile-detonation” strategy to precisely supply and efficiently amplify Cerenkov radiation energy for cancer theranostics. Adv Mater. 2019;31:e1904894.PubMedPubMedCentralCrossRef Yu B, Ni D, Rosenkrans ZT, Barnhart TE, Wei H, Ferreira CA, et al. A “missile-detonation” strategy to precisely supply and efficiently amplify Cerenkov radiation energy for cancer theranostics. Adv Mater. 2019;31:e1904894.PubMedPubMedCentralCrossRef
120.
go back to reference Liu H, Carpenter CM, Jiang H, Pratx G, Sun C, Buchin MP, et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med. 2012;53:1579–84.PubMedCrossRef Liu H, Carpenter CM, Jiang H, Pratx G, Sun C, Buchin MP, et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med. 2012;53:1579–84.PubMedCrossRef
121.
go back to reference Hu H, Cao X, Kang F, Wang M, Lin Y, Liu M, et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25:1814–22.PubMedCrossRef Hu H, Cao X, Kang F, Wang M, Lin Y, Liu M, et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25:1814–22.PubMedCrossRef
122.
go back to reference Hu Z, Qu Y, Wang K, Zhang X, Zha J, Song T, et al. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat Commun. 2015;6:7560.PubMedCrossRef Hu Z, Qu Y, Wang K, Zhang X, Zha J, Song T, et al. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat Commun. 2015;6:7560.PubMedCrossRef
123.
go back to reference Hu Z, Zhao M, Qu Y, Zhang X, Zhang M, Liu M, et al. In vivo 3-dimensional radiopharmaceutical-excited fluorescence tomography. J Nucl Med. 2017;58(1):169–74.PubMedCrossRef Hu Z, Zhao M, Qu Y, Zhang X, Zhang M, Liu M, et al. In vivo 3-dimensional radiopharmaceutical-excited fluorescence tomography. J Nucl Med. 2017;58(1):169–74.PubMedCrossRef
124.
go back to reference Zhang Z, Qu Y, Zhang X, Guo H, Shi X, Cai M, et al. Radiopharmaceuticals and fluorescein sodium mediated triple-modality molecular imaging allows precise image-guided tumor surgery. Adv Sci. 2019;6(13):1900159.CrossRef Zhang Z, Qu Y, Zhang X, Guo H, Shi X, Cai M, et al. Radiopharmaceuticals and fluorescein sodium mediated triple-modality molecular imaging allows precise image-guided tumor surgery. Adv Sci. 2019;6(13):1900159.CrossRef
125.
go back to reference Cao X, Chen X, Kang F, Lin Y, Liu M, Hu H, et al. Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies. Biomed Opt Express. 2014;5:3660–70.PubMedPubMedCentralCrossRef Cao X, Chen X, Kang F, Lin Y, Liu M, Hu H, et al. Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies. Biomed Opt Express. 2014;5:3660–70.PubMedPubMedCentralCrossRef
126.
go back to reference Zhang Z, Qu Y, Cao Y, Shi X, Guo H, Zhang X, et al. A novel in vivo Cerenkov luminescence image-guided surgery on primary and metastatic colorectal cancer. J Biophotonics. 2019;13(3):e201960152.PubMed Zhang Z, Qu Y, Cao Y, Shi X, Guo H, Zhang X, et al. A novel in vivo Cerenkov luminescence image-guided surgery on primary and metastatic colorectal cancer. J Biophotonics. 2019;13(3):e201960152.PubMed
127.
go back to reference Hu Z, Chi C, Liu M, Guo H, Zhang Z, Zeng C, et al. Nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging allows precise image-guided tumor-removal surgery. Nanomed Nanotechnol. 2017;13(4):1323–31.CrossRef Hu Z, Chi C, Liu M, Guo H, Zhang Z, Zeng C, et al. Nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging allows precise image-guided tumor-removal surgery. Nanomed Nanotechnol. 2017;13(4):1323–31.CrossRef
128.
go back to reference Grootendorst MR, Cariati M, Pinder S, Kothari A, Douek M, Kovacs T, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging – a first-in-human feasibility study. J Nucl Med. 2017;58(6):891–8.PubMedCrossRef Grootendorst MR, Cariati M, Pinder S, Kothari A, Douek M, Kovacs T, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging – a first-in-human feasibility study. J Nucl Med. 2017;58(6):891–8.PubMedCrossRef
129.
go back to reference oldeHeuvel J, de Wit-van der Veen BJ, van der Poel HG, Bekers EM, Grootendorst MR, Vyas KN, et al. 68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging. 2020;47(11):2624–32. oldeHeuvel J, de Wit-van der Veen BJ, van der Poel HG, Bekers EM, Grootendorst MR, Vyas KN, et al. 68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging. 2020;47(11):2624–32. 
130.
go back to reference Hu Z, Zhang Z, Guo H, Tian J. Intraoperative Cerenkov luminescence imaging for image-guided resection of low rectal cancer on swine models. J Nucl Med. 2018;59(S1):246. Hu Z, Zhang Z, Guo H, Tian J. Intraoperative Cerenkov luminescence imaging for image-guided resection of low rectal cancer on swine models. J Nucl Med. 2018;59(S1):246.
131.
go back to reference Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, et al. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics. 2018;8:2508–20.PubMedPubMedCentralCrossRef Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, et al. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics. 2018;8:2508–20.PubMedPubMedCentralCrossRef
132.
go back to reference He K, Chi C, Li D, Zhang J, Niu G, Lv F, et al. Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery. Bioeng Transl Med. 2021;6:e10182.PubMedCrossRef He K, Chi C, Li D, Zhang J, Niu G, Lv F, et al. Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery. Bioeng Transl Med. 2021;6:e10182.PubMedCrossRef
133.
go back to reference Liu Y, Gao B, Fang C, Su S, Yang X, Tian J, et al. Application of near-infrared fluorescence imaging technology in liver cancer surgery. Surg Innov. 2021;26:1553350621997777. Liu Y, Gao B, Fang C, Su S, Yang X, Tian J, et al. Application of near-infrared fluorescence imaging technology in liver cancer surgery. Surg Innov. 2021;26:1553350621997777.
134.
go back to reference Liu B, Liu T, Su M, Ma Y-Q, Zhang B-F, Wang Y-F, et al. Improving the surgical effect for primary liver cancer with intraoperative fluorescence navigation compared with intraoperative ultrasound. Med Sci Monit Int Med J Exp Clin Res. 2019;25:3406–16. Liu B, Liu T, Su M, Ma Y-Q, Zhang B-F, Wang Y-F, et al. Improving the surgical effect for primary liver cancer with intraoperative fluorescence navigation compared with intraoperative ultrasound. Med Sci Monit Int Med J Exp Clin Res. 2019;25:3406–16.
135.
go back to reference Xu Y, Chen M, Meng X, Lu P, Wang X, Zhang W, et al. Laparoscopic anatomical liver resection guided by real-time indocyanine green fluorescence imaging: experience and lessons learned from the initial series in a single center. Surg Endosc. 2020;34:4683–91.PubMedCrossRef Xu Y, Chen M, Meng X, Lu P, Wang X, Zhang W, et al. Laparoscopic anatomical liver resection guided by real-time indocyanine green fluorescence imaging: experience and lessons learned from the initial series in a single center. Surg Endosc. 2020;34:4683–91.PubMedCrossRef
137.
go back to reference Barth CW, Gibbs SL. Fluorescence image-guided surgery - a perspective on contrast agent development. Proc SPIE Int Soc Opt Eng. 2020;11222:112220J.PubMedPubMedCentral Barth CW, Gibbs SL. Fluorescence image-guided surgery - a perspective on contrast agent development. Proc SPIE Int Soc Opt Eng. 2020;11222:112220J.PubMedPubMedCentral
138.
go back to reference Kennedy GT, Azari FS, Bernstein E, Marfatia I, Din A, Kucharczuk JC, et al. Targeted intraoperative molecular imaging for localizing nonpalpable tumors and quantifying resection margin distances. JAMA Surg. 2021;156(11):1043–50.PubMedCrossRef Kennedy GT, Azari FS, Bernstein E, Marfatia I, Din A, Kucharczuk JC, et al. Targeted intraoperative molecular imaging for localizing nonpalpable tumors and quantifying resection margin distances. JAMA Surg. 2021;156(11):1043–50.PubMedCrossRef
139.
go back to reference Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, et al. Tumor-specific uptake of fluorescent bevacizumab–IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res. 2017;23:2730–41.PubMedCrossRef Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, et al. Tumor-specific uptake of fluorescent bevacizumab–IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res. 2017;23:2730–41.PubMedCrossRef
140.
go back to reference Li G, Qin Y, Xie C, Wu Y-L, Chen X. Trends in oncology drug innovation in China. Nat Rev Drug Discov. 2021;20:15–6.PubMedCrossRef Li G, Qin Y, Xie C, Wu Y-L, Chen X. Trends in oncology drug innovation in China. Nat Rev Drug Discov. 2021;20:15–6.PubMedCrossRef
141.
142.
go back to reference Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.PubMedCrossRef Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.PubMedCrossRef
143.
go back to reference Heinrich S, Craig AJ, Ma L, Heinrich B, Greten TF, Wang XW. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. J Hepatol. 2021;74:700–15.PubMedCrossRef Heinrich S, Craig AJ, Ma L, Heinrich B, Greten TF, Wang XW. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. J Hepatol. 2021;74:700–15.PubMedCrossRef
144.
go back to reference Chen J, Jiang Y, Chang T-S, Joshi B, Zhou J, Rubenstein JH, et al. Multiplexed endoscopic imaging of Barrett’s neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut. 2021;70:1010–3.PubMedCrossRef Chen J, Jiang Y, Chang T-S, Joshi B, Zhou J, Rubenstein JH, et al. Multiplexed endoscopic imaging of Barrett’s neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut. 2021;70:1010–3.PubMedCrossRef
Metadata
Title
Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China
Authors
Zeyu Zhang
Kunshan He
Chongwei Chi
Zhenhua Hu
Jie Tian
Publication date
01-03-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05730-y

Other articles of this Issue 8/2022

European Journal of Nuclear Medicine and Molecular Imaging 8/2022 Go to the issue