Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 5/2011

01-05-2011 | Review Article

In vivo imaging of immune cell trafficking in cancer

Authors: Luisa Ottobrini, Cristina Martelli, Daria Lucia Trabattoni, Mario Clerici, Giovanni Lucignani

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 5/2011

Login to get access

Abstract

Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.
Literature
1.
go back to reference Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging. Current technology and perspectives for oncological imaging. Eur J Cancer 2002;38(16):2173–88.PubMedCrossRef Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging. Current technology and perspectives for oncological imaging. Eur J Cancer 2002;38(16):2173–88.PubMedCrossRef
2.
go back to reference Dunn KW, Sutton TA. Functional studies in living animals using multiphoton microscopy. ILAR J 2008;49(1):66–77.PubMed Dunn KW, Sutton TA. Functional studies in living animals using multiphoton microscopy. ILAR J 2008;49(1):66–77.PubMed
3.
go back to reference Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov 2008;7(7):591–607.PubMedCrossRef Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov 2008;7(7):591–607.PubMedCrossRef
4.
go back to reference Ottobrini L, Ciana P, Biserni A, Lucignani G, Maggi A. Molecular imaging: a new way to study molecular processes in vivo. Mol Cell Endocrinol 2006;246(1–2):69–75.PubMedCrossRef Ottobrini L, Ciana P, Biserni A, Lucignani G, Maggi A. Molecular imaging: a new way to study molecular processes in vivo. Mol Cell Endocrinol 2006;246(1–2):69–75.PubMedCrossRef
5.
go back to reference Lucignani G, Ottobrini L, Martelli C, Rescigno M, Clerici M. Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 2006;24(9):410–8.PubMedCrossRef Lucignani G, Ottobrini L, Martelli C, Rescigno M, Clerici M. Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 2006;24(9):410–8.PubMedCrossRef
6.
go back to reference Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17(7):484–99.PubMedCrossRef Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17(7):484–99.PubMedCrossRef
7.
go back to reference Sandhu A, Handa H, Abe M. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 2010;21:442001–23.PubMedCrossRef Sandhu A, Handa H, Abe M. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 2010;21:442001–23.PubMedCrossRef
8.
go back to reference Bae KH, Lee K, Kim C, Park TG. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 2011;32:176–84.PubMedCrossRef Bae KH, Lee K, Kim C, Park TG. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 2011;32:176–84.PubMedCrossRef
9.
go back to reference Wolf M, Hull WE, Mier W, Heiland S, Bauder-Wüst U, Kinscherf R, et al. Polyamine-substituted gadolinium chelates: a new class of intracellular contrast agents for magnetic resonance imaging of tumors. J Med Chem 2007;50(1):139–48.PubMedCrossRef Wolf M, Hull WE, Mier W, Heiland S, Bauder-Wüst U, Kinscherf R, et al. Polyamine-substituted gadolinium chelates: a new class of intracellular contrast agents for magnetic resonance imaging of tumors. J Med Chem 2007;50(1):139–48.PubMedCrossRef
10.
go back to reference Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 2002;17(2):803–11.PubMedCrossRef Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 2002;17(2):803–11.PubMedCrossRef
11.
go back to reference Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 2004;21(1):311–7.PubMedCrossRef Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 2004;21(1):311–7.PubMedCrossRef
12.
go back to reference Shapiro EM, Koretsky AP. Convertible manganese contrast agents for molecular and cellular MRI. Magn Reson Med 2008;60(2):265–9.PubMedCrossRef Shapiro EM, Koretsky AP. Convertible manganese contrast agents for molecular and cellular MRI. Magn Reson Med 2008;60(2):265–9.PubMedCrossRef
13.
go back to reference Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004;104(4):1217–23.PubMedCrossRef Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004;104(4):1217–23.PubMedCrossRef
14.
go back to reference Ottobrini L, Lucignani G, Clerici M, Rescigno M. Assessing cell trafficking by noninvasive imaging techniques: applications in experimental tumor immunology. Q J Nucl Med Mol Imaging 2005;49(4):361–6.PubMed Ottobrini L, Lucignani G, Clerici M, Rescigno M. Assessing cell trafficking by noninvasive imaging techniques: applications in experimental tumor immunology. Q J Nucl Med Mol Imaging 2005;49(4):361–6.PubMed
15.
go back to reference Hoshino A, Fujioka NMK, Suzuki K, Yasuhara M, Yamamoto K. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. J Artif Organs 2007;10(3):149–57.PubMedCrossRef Hoshino A, Fujioka NMK, Suzuki K, Yasuhara M, Yamamoto K. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. J Artif Organs 2007;10(3):149–57.PubMedCrossRef
16.
go back to reference Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech 2002;13(1):40–6.PubMedCrossRef Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech 2002;13(1):40–6.PubMedCrossRef
17.
go back to reference Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281(5385):2013–6.PubMedCrossRef Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281(5385):2013–6.PubMedCrossRef
18.
19.
go back to reference Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol Immunol 2004;48(9):669–751.PubMed Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol Immunol 2004;48(9):669–751.PubMed
20.
21.
go back to reference Gholamrezanezhad A, Mirpour S, Ardekani JM, Bagheri M, Alimoghadam K, Yarmand S, et al. Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 2009;30:210–6.PubMedCrossRef Gholamrezanezhad A, Mirpour S, Ardekani JM, Bagheri M, Alimoghadam K, Yarmand S, et al. Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 2009;30:210–6.PubMedCrossRef
22.
go back to reference Ulker O, Genç S, Ateş H, Durak H, Atabey N. 99mTc-HMPAO labelling inhibits cell motility and cell proliferation and induces apoptosis of NC–NC cells. Mutat Res 2007;631(2):69–76.PubMed Ulker O, Genç S, Ateş H, Durak H, Atabey N. 99mTc-HMPAO labelling inhibits cell motility and cell proliferation and induces apoptosis of NC–NC cells. Mutat Res 2007;631(2):69–76.PubMed
23.
go back to reference Block SS. Fungitoxicity of the 8-quinolinols. J Agric Food Chem 1955;3(3):229–34.CrossRef Block SS. Fungitoxicity of the 8-quinolinols. J Agric Food Chem 1955;3(3):229–34.CrossRef
24.
go back to reference Klerk CPW, Overmeer RM, Niers TMH, Versteeg HH, Richel DJ, Buckle T, et al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 2007;43(1 Suppl):7–13, 30.PubMedCrossRef Klerk CPW, Overmeer RM, Niers TMH, Versteeg HH, Richel DJ, Buckle T, et al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 2007;43(1 Suppl):7–13, 30.PubMedCrossRef
26.
go back to reference Pham W, Kobukai S, Hotta C, Gore JC. Dendritic cells; therapy and imaging. Expert Opin Biol Ther 2009;9(5):539–64.PubMedCrossRef Pham W, Kobukai S, Hotta C, Gore JC. Dendritic cells; therapy and imaging. Expert Opin Biol Ther 2009;9(5):539–64.PubMedCrossRef
27.
go back to reference Gilad AA, Ziv K, McMahon MT, van Zijl PCM, Neeman M, Bulte JWM. MRI reporter genes. J Nucl Med 2008;49(12):1905–8.PubMedCrossRef Gilad AA, Ziv K, McMahon MT, van Zijl PCM, Neeman M, Bulte JWM. MRI reporter genes. J Nucl Med 2008;49(12):1905–8.PubMedCrossRef
28.
go back to reference Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol 2009;157(2):153–65.PubMedCrossRef Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol 2009;157(2):153–65.PubMedCrossRef
29.
go back to reference Brutkiewicz S, Mendonca M, Stantz K, Comerford K, Bigsby R, Hutchins G, et al. The expression level of luciferase within tumour cells can alter tumour growth upon in vivo bioluminescence imaging. Luminescence 2007;22(3):221–8.PubMedCrossRef Brutkiewicz S, Mendonca M, Stantz K, Comerford K, Bigsby R, Hutchins G, et al. The expression level of luciferase within tumour cells can alter tumour growth upon in vivo bioluminescence imaging. Luminescence 2007;22(3):221–8.PubMedCrossRef
30.
go back to reference Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H. Innate immune response induced by gene delivery vectors. Int J Pharm 2008;354(1–2):9–15.PubMedCrossRef Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H. Innate immune response induced by gene delivery vectors. Int J Pharm 2008;354(1–2):9–15.PubMedCrossRef
31.
go back to reference Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med 1996;125:605–13.PubMed Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med 1996;125:605–13.PubMed
32.
go back to reference Lucignani G. Imaging biomarkers: from research to patient care—a shift in view. Eur J Nucl Med Mol Imaging 2007;34:1693–7.PubMedCrossRef Lucignani G. Imaging biomarkers: from research to patient care—a shift in view. Eur J Nucl Med Mol Imaging 2007;34:1693–7.PubMedCrossRef
33.
go back to reference Neves AA, Brindle KM. Assessing responses to cancer therapy using molecular imaging. Biochim Biophys Acta 2006;1766:242–61.PubMed Neves AA, Brindle KM. Assessing responses to cancer therapy using molecular imaging. Biochim Biophys Acta 2006;1766:242–61.PubMed
34.
go back to reference Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106(3):263–6.PubMedCrossRef Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106(3):263–6.PubMedCrossRef
35.
go back to reference Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392(6673):245–52.PubMedCrossRef Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392(6673):245–52.PubMedCrossRef
36.
go back to reference O’Neill DW, Bhardwaj N. Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 2007;36:131–41.PubMedCrossRef O’Neill DW, Bhardwaj N. Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 2007;36:131–41.PubMedCrossRef
38.
go back to reference Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106(3):255–8.PubMedCrossRef Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106(3):255–8.PubMedCrossRef
39.
go back to reference Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 2008;57:1719–26.PubMedCrossRef Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 2008;57:1719–26.PubMedCrossRef
40.
go back to reference de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23(11):1407–13.PubMedCrossRef de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23(11):1407–13.PubMedCrossRef
41.
go back to reference Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001;61(23):8513–9.PubMed Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001;61(23):8513–9.PubMed
42.
go back to reference Yamanaka R. Dendritic-cell- and peptide-based vaccination strategies for glioma. Neurosurg Rev 2009;32(3):265–73.PubMedCrossRef Yamanaka R. Dendritic-cell- and peptide-based vaccination strategies for glioma. Neurosurg Rev 2009;32(3):265–73.PubMedCrossRef
43.
go back to reference Rescigno M, Winzler C, Delia D, Mutini C, Lutz MB, Ricciardi-Castagnoli P. Dendritic cell maturation is required for initiation of the immune response. J Leukoc Biol 1997;61(4):415–21.PubMed Rescigno M, Winzler C, Delia D, Mutini C, Lutz MB, Ricciardi-Castagnoli P. Dendritic cell maturation is required for initiation of the immune response. J Leukoc Biol 1997;61(4):415–21.PubMed
44.
go back to reference Bousso P. T-cell activation by fendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 2008;8(9):675–84.PubMedCrossRef Bousso P. T-cell activation by fendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 2008;8(9):675–84.PubMedCrossRef
45.
go back to reference Stoll S, Delon J, Brotz TM, Germain RN. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 2002;296(5574):1873–6.PubMedCrossRef Stoll S, Delon J, Brotz TM, Germain RN. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 2002;296(5574):1873–6.PubMedCrossRef
46.
go back to reference Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 2004;5(12):1235–42.PubMedCrossRef Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 2004;5(12):1235–42.PubMedCrossRef
47.
go back to reference Kupiec-Weglinski JW, Austyn JM, Morris PJ. Migration pattern of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J Exp Med 1988;167(2):632–45.PubMedCrossRef Kupiec-Weglinski JW, Austyn JM, Morris PJ. Migration pattern of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J Exp Med 1988;167(2):632–45.PubMedCrossRef
48.
go back to reference Suda T, Callahan RJ, Wilkenson RA, van Rooijen N, Schneeberger EE. Interferon-γ reduces Ia+dendritic cell traffic to the lung. J Leukoc Biol 1996;60(4):519–27.PubMed Suda T, Callahan RJ, Wilkenson RA, van Rooijen N, Schneeberger EE. Interferon-γ reduces Ia+dendritic cell traffic to the lung. J Leukoc Biol 1996;60(4):519–27.PubMed
49.
go back to reference Prince HM, Wall DM, Ritchie D, Honemann D, Harrrison S, Quach H, et al. In vivo tracking of dendritic cells in patients with multiple myeloma. J Immunother 2008;31(2):166–79.PubMedCrossRef Prince HM, Wall DM, Ritchie D, Honemann D, Harrrison S, Quach H, et al. In vivo tracking of dendritic cells in patients with multiple myeloma. J Immunother 2008;31(2):166–79.PubMedCrossRef
50.
go back to reference Ruiz A, Nomdedeu M, Ortega M, Lejeune M, Setoain J, Climent N, et al. Assessment of migration of HIV-1-loaded dendritic cells labeled with 111In-oxine used as a therapeutic vaccine in HIV-1-infected patients. Immunotherapy 2009;1(3):347–54.PubMedCrossRef Ruiz A, Nomdedeu M, Ortega M, Lejeune M, Setoain J, Climent N, et al. Assessment of migration of HIV-1-loaded dendritic cells labeled with 111In-oxine used as a therapeutic vaccine in HIV-1-infected patients. Immunotherapy 2009;1(3):347–54.PubMedCrossRef
51.
go back to reference Blocklet D, Toungouz M, Kiss R, Lambermont M, Velu T, Duriau D, et al. 111In-oxine and 99mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 2003;30(3):440–7.PubMedCrossRef Blocklet D, Toungouz M, Kiss R, Lambermont M, Velu T, Duriau D, et al. 111In-oxine and 99mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 2003;30(3):440–7.PubMedCrossRef
52.
go back to reference Verdijk P, Aarntzen EH, Lesterhuis WJ, Boullart AC, Kok E, van Rossum MM, et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res 2009;15(7):2531–40.PubMedCrossRef Verdijk P, Aarntzen EH, Lesterhuis WJ, Boullart AC, Kok E, van Rossum MM, et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res 2009;15(7):2531–40.PubMedCrossRef
53.
go back to reference Olasz EB, Lang L, Seidel J, Green MJ, Eckelman WC, Katz SI. Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 2002;260(1–2):137–48.PubMedCrossRef Olasz EB, Lang L, Seidel J, Green MJ, Eckelman WC, Katz SI. Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 2002;260(1–2):137–48.PubMedCrossRef
54.
go back to reference Thakur ML, Lavender JP, Arnot RN, Silvester DJ, Segal AW. Indium-111-labeled autologous leukocytes in man. J Nucl Med 1977;18:1014–21.PubMed Thakur ML, Lavender JP, Arnot RN, Silvester DJ, Segal AW. Indium-111-labeled autologous leukocytes in man. J Nucl Med 1977;18:1014–21.PubMed
55.
go back to reference Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, et al. Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 2010;12(2):238–50.PubMedCrossRef Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, et al. Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 2010;12(2):238–50.PubMedCrossRef
56.
go back to reference Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 2005;23(8):983–7.PubMedCrossRef Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 2005;23(8):983–7.PubMedCrossRef
57.
go back to reference Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev 2001;47(2–3):209–28.PubMedCrossRef Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev 2001;47(2–3):209–28.PubMedCrossRef
58.
go back to reference Castro O, Nesbitt AE, Lyles D. Effect of a perfluorocarbon emulsion (Fluosol-DA) on reticuloendothelial system clearance function. Am J Hematol 1984;16:15–21.PubMedCrossRef Castro O, Nesbitt AE, Lyles D. Effect of a perfluorocarbon emulsion (Fluosol-DA) on reticuloendothelial system clearance function. Am J Hematol 1984;16:15–21.PubMedCrossRef
59.
go back to reference Swirski FK, Berger CR, Figueiredo JL, Mempel TR, von Andrian UH, Pittet MJ, et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS One 2007;2(10):e1075.PubMedCrossRef Swirski FK, Berger CR, Figueiredo JL, Mempel TR, von Andrian UH, Pittet MJ, et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS One 2007;2(10):e1075.PubMedCrossRef
60.
go back to reference Noh YW, Lim YT, Chung BH. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J 2008;22(11):3908–18.PubMedCrossRef Noh YW, Lim YT, Chung BH. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J 2008;22(11):3908–18.PubMedCrossRef
61.
go back to reference Schimmelpfennig CH, Schulz S, Arber C, Baker J, Tarner I, McBride J, et al. Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 2005;167(5):1321–31.PubMedCrossRef Schimmelpfennig CH, Schulz S, Arber C, Baker J, Tarner I, McBride J, et al. Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 2005;167(5):1321–31.PubMedCrossRef
62.
go back to reference Ridolfi R, Riccobon A, Galassi R, Giorgetti G, Petrini M, Fiamminghi L, et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2004;2(1):27–37.PubMedCrossRef Ridolfi R, Riccobon A, Galassi R, Giorgetti G, Petrini M, Fiamminghi L, et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2004;2(1):27–37.PubMedCrossRef
63.
go back to reference Quillien V, Moisan A, Carsin A, Lesimple T, Lefeuvre C, Adamski H, et al. Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging 2005;32(7):731–41.PubMedCrossRef Quillien V, Moisan A, Carsin A, Lesimple T, Lefeuvre C, Adamski H, et al. Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging 2005;32(7):731–41.PubMedCrossRef
64.
go back to reference Baumjohann D, Hess A, Budinsky L, Brune K, Schuler G, Lutz MB. In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. Eur J Immunol 2006;36(9):2544–55.PubMedCrossRef Baumjohann D, Hess A, Budinsky L, Brune K, Schuler G, Lutz MB. In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. Eur J Immunol 2006;36(9):2544–55.PubMedCrossRef
66.
go back to reference Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 2008;222:155–61.PubMedCrossRef Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 2008;222:155–61.PubMedCrossRef
67.
go back to reference Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 2007;67(20):10019–26.PubMedCrossRef Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 2007;67(20):10019–26.PubMedCrossRef
68.
go back to reference Sunderkötter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophage-derived angiogenesis factors. Pharmacol Ther 1991;51(2):195–216.PubMedCrossRef Sunderkötter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophage-derived angiogenesis factors. Pharmacol Ther 1991;51(2):195–216.PubMedCrossRef
69.
go back to reference Lesimple T, Moisan A, Carsin A, Ollivier I, Mousseau M, Meunier B, et al. Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects. Cancer Immunol Immunother 2003;52(7):438–44.PubMedCrossRef Lesimple T, Moisan A, Carsin A, Ollivier I, Mousseau M, Meunier B, et al. Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects. Cancer Immunol Immunother 2003;52(7):438–44.PubMedCrossRef
70.
go back to reference Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001;193(6):727–40.PubMedCrossRef Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001;193(6):727–40.PubMedCrossRef
71.
go back to reference Wall l, Burke F, Barton C, Smyth J, Balkwill F. IFN-gamma induces apoptosis in ovarian cancer cells in vivo and in vitro. Clin Cancer Res 2003;9(7):2487–96.PubMed Wall l, Burke F, Barton C, Smyth J, Balkwill F. IFN-gamma induces apoptosis in ovarian cancer cells in vivo and in vitro. Clin Cancer Res 2003;9(7):2487–96.PubMed
72.
go back to reference Watkins SK, Egilmez NK, Suttles J, Stout RD. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol 2007;178(3):1357–62.PubMed Watkins SK, Egilmez NK, Suttles J, Stout RD. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol 2007;178(3):1357–62.PubMed
73.
go back to reference Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260(5107):547–9.PubMedCrossRef Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260(5107):547–9.PubMedCrossRef
74.
go back to reference Clerici M, Clerici E, Shearer GM. The tumor enhancement phenomenon: reinterpretation from a Th1/Th2 perspective. J Natl Cancer Inst 1996;88(7):461–2.PubMedCrossRef Clerici M, Clerici E, Shearer GM. The tumor enhancement phenomenon: reinterpretation from a Th1/Th2 perspective. J Natl Cancer Inst 1996;88(7):461–2.PubMedCrossRef
75.
go back to reference Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007;67(6):2649–56.PubMedCrossRef Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007;67(6):2649–56.PubMedCrossRef
76.
go back to reference Wyckoff J, Wang W, Lin EJ, Wang Y, Pixley F, Stanley ER. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004;64(19):7022–9.PubMedCrossRef Wyckoff J, Wang W, Lin EJ, Wang Y, Pixley F, Stanley ER. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004;64(19):7022–9.PubMedCrossRef
77.
go back to reference Satoh T, Saika T, Ebara S, Kusaka N, Timme TL, Yang G, et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 2003;63(22):7853–60.PubMed Satoh T, Saika T, Ebara S, Kusaka N, Timme TL, Yang G, et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 2003;63(22):7853–60.PubMed
78.
go back to reference Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005;23(11):1418–23.PubMedCrossRef Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005;23(11):1418–23.PubMedCrossRef
79.
go back to reference Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 2006;1(1):73–9.PubMedCrossRef Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 2006;1(1):73–9.PubMedCrossRef
80.
go back to reference Leimgruber A, Berger C, Cortez-Retamozo V, Etzrodt M, Newton AP, Waterman P, et al. Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle. Neoplasia 2009;11(5):459–68.PubMed Leimgruber A, Berger C, Cortez-Retamozo V, Etzrodt M, Newton AP, Waterman P, et al. Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle. Neoplasia 2009;11(5):459–68.PubMed
81.
go back to reference Mukherji B, Chakraborty NG, Yamasaki S, Okino T, Yamase H, Sporn JR, et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci U S A 1995;92(17):8078–82.PubMedCrossRef Mukherji B, Chakraborty NG, Yamasaki S, Okino T, Yamase H, Sporn JR, et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci U S A 1995;92(17):8078–82.PubMedCrossRef
82.
go back to reference Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998;4(3):328–32.PubMedCrossRef Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998;4(3):328–32.PubMedCrossRef
83.
go back to reference Lesimple T, Moisan A, Toujas L. Autologous macrophages and anti-tumour cell therapy. Res Immunol 1998;149(7–8):663–71.PubMedCrossRef Lesimple T, Moisan A, Toujas L. Autologous macrophages and anti-tumour cell therapy. Res Immunol 1998;149(7–8):663–71.PubMedCrossRef
84.
go back to reference Quillien V, Moisan A, Lesimple T, Leberre C, Toujas L. Biodistribution of 111indium-labeled macrophages infused intravenously in patients with renal carcinoma. Cancer Immunol Immunother 2001;50(9):477–82.PubMedCrossRef Quillien V, Moisan A, Lesimple T, Leberre C, Toujas L. Biodistribution of 111indium-labeled macrophages infused intravenously in patients with renal carcinoma. Cancer Immunol Immunother 2001;50(9):477–82.PubMedCrossRef
85.
go back to reference Mantovani A, Gavazzi R, Polentarutti N, Spreafico F, Garattini S. Divergent effects of macrophage toxins on growth of primary tumors and lung metastases in mice. Int J Cancer 1980;25(5):617–20.PubMedCrossRef Mantovani A, Gavazzi R, Polentarutti N, Spreafico F, Garattini S. Divergent effects of macrophage toxins on growth of primary tumors and lung metastases in mice. Int J Cancer 1980;25(5):617–20.PubMedCrossRef
86.
go back to reference Den Otter WF, Dullens FJ. Anti-tumour effects of macrophages injected into animals: a review. In: James K, McBride B, Staurt A, editors. The macrophage and cancer. Edinburgh: Econoprint; 1977. p. 119–141. Den Otter WF, Dullens FJ. Anti-tumour effects of macrophages injected into animals: a review. In: James K, McBride B, Staurt A, editors. The macrophage and cancer. Edinburgh: Econoprint; 1977. p. 119–141.
87.
go back to reference Mantovani A. Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity. Int J Cancer 1978;22(6):741–6.PubMedCrossRef Mantovani A. Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity. Int J Cancer 1978;22(6):741–6.PubMedCrossRef
88.
go back to reference Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 2003;74(2):186–96.PubMedCrossRef Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 2003;74(2):186–96.PubMedCrossRef
89.
go back to reference Candido KA, Shimizu K, McLaughlin JC, Kunkel R, Fuller JA, Redman BG, et al. Local administration of dendritic cells inhibits established breast tumor growth: implications for apoptosis-inducing agents. Cancer Res 2001;61(1):228–36.PubMed Candido KA, Shimizu K, McLaughlin JC, Kunkel R, Fuller JA, Redman BG, et al. Local administration of dendritic cells inhibits established breast tumor growth: implications for apoptosis-inducing agents. Cancer Res 2001;61(1):228–36.PubMed
90.
go back to reference Durrant LG, Ramage JM. Development of cancer vaccines to activate cytotoxic T lymphocytes. Expert Opin Biol Ther 2005;5(4):555–63.PubMedCrossRef Durrant LG, Ramage JM. Development of cancer vaccines to activate cytotoxic T lymphocytes. Expert Opin Biol Ther 2005;5(4):555–63.PubMedCrossRef
91.
go back to reference Rosenberg SA, Dudley ME. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci U S A 2004;101 Suppl 2:14639–45.PubMedCrossRef Rosenberg SA, Dudley ME. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci U S A 2004;101 Suppl 2:14639–45.PubMedCrossRef
92.
go back to reference Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 2007;67(1):354–61.PubMedCrossRef Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 2007;67(1):354–61.PubMedCrossRef
93.
go back to reference Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 2001;61(13):5132–6.PubMed Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 2001;61(13):5132–6.PubMed
94.
go back to reference Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 2007;26(3–4):373–400.PubMedCrossRef Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 2007;26(3–4):373–400.PubMedCrossRef
95.
go back to reference Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005;201(5):779–91.PubMedCrossRef Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005;201(5):779–91.PubMedCrossRef
96.
go back to reference Blankenstein T. The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 2005;17(2):180–6.PubMedCrossRef Blankenstein T. The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 2005;17(2):180–6.PubMedCrossRef
97.
go back to reference Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 2006;203(12):2749–61.PubMedCrossRef Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 2006;203(12):2749–61.PubMedCrossRef
98.
go back to reference Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 2007;204(2):345–56.PubMedCrossRef Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 2007;204(2):345–56.PubMedCrossRef
99.
go back to reference Cahalan MD, Parker I. Imaging the choreography of lymphocyte trafficking and the immune response. Curr Opin Immunol 2006;18(4):476–82.PubMedCrossRef Cahalan MD, Parker I. Imaging the choreography of lymphocyte trafficking and the immune response. Curr Opin Immunol 2006;18(4):476–82.PubMedCrossRef
100.
go back to reference Smirnov P, Lavergne E, Gazeau F, Lewin M, Boissonnas A, Doan BT, et al. In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy. Magn Reson Med 2006;56(3):498–508.PubMedCrossRef Smirnov P, Lavergne E, Gazeau F, Lewin M, Boissonnas A, Doan BT, et al. In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy. Magn Reson Med 2006;56(3):498–508.PubMedCrossRef
101.
go back to reference Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtman AH, et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 2003;63(20):6838–46.PubMed Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtman AH, et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 2003;63(20):6838–46.PubMed
102.
go back to reference Lazovic J, Jensen MC, Ferkassian E, Aguilar B, Raubitschek A, Jacobs RE. Imaging immune response in vivo: cytolytic action of genetically altered T cells directed to glioblastoma multiforme. Clin Cancer Res 2008;14(12):3832–9.PubMedCrossRef Lazovic J, Jensen MC, Ferkassian E, Aguilar B, Raubitschek A, Jacobs RE. Imaging immune response in vivo: cytolytic action of genetically altered T cells directed to glioblastoma multiforme. Clin Cancer Res 2008;14(12):3832–9.PubMedCrossRef
103.
go back to reference Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J. Noninvasive detection of therapeutic cytolytic T cells with 18 F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009;6(1):53–8.PubMedCrossRef Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J. Noninvasive detection of therapeutic cytolytic T cells with 18 F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009;6(1):53–8.PubMedCrossRef
104.
go back to reference Dobrenkov K, Olszewska M, Likar Y, Shenker L, Gunset G, Cai S, et al. Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med 2008;49(7):1162–70.PubMedCrossRef Dobrenkov K, Olszewska M, Likar Y, Shenker L, Gunset G, Cai S, et al. Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med 2008;49(7):1162–70.PubMedCrossRef
105.
go back to reference Jansen ED, Pickett PM, Mackanos MA, Virostko J. Effect of optical tissue clearing on spatial resolution and sensitivity of bioluminescence imaging. J Biomed Opt 2006;11(4):041119.PubMedCrossRef Jansen ED, Pickett PM, Mackanos MA, Virostko J. Effect of optical tissue clearing on spatial resolution and sensitivity of bioluminescence imaging. J Biomed Opt 2006;11(4):041119.PubMedCrossRef
106.
go back to reference Prescher JA, Contag CH. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 2010;14:80–9.PubMedCrossRef Prescher JA, Contag CH. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 2010;14:80–9.PubMedCrossRef
107.
go back to reference Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A 2007;104(30):12457–61.PubMedCrossRef Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A 2007;104(30):12457–61.PubMedCrossRef
108.
go back to reference Su H, Chang DS, Gambhir SS, Braun J. Monitoring the antitumor response of naive and memory CD8 T cells in RAG1-/- mice by positron-emission tomography. J Immunol 2006;176(7):4459–67.PubMed Su H, Chang DS, Gambhir SS, Braun J. Monitoring the antitumor response of naive and memory CD8 T cells in RAG1-/- mice by positron-emission tomography. J Immunol 2006;176(7):4459–67.PubMed
109.
go back to reference Gudmundsdottir H, Turka LA. A closer look at homeostatic proliferation of CD4+ T cells: costimulatory requirements and role in memory formation. J Immunol 2001;167(7):3699–707.PubMed Gudmundsdottir H, Turka LA. A closer look at homeostatic proliferation of CD4+ T cells: costimulatory requirements and role in memory formation. J Immunol 2001;167(7):3699–707.PubMed
110.
go back to reference Doubrovin MM, Doubrovina ES, Zanzonico P, Sadelain M, Larson SM, O’Reilly R. In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 2007;67(24):11959–69.PubMedCrossRef Doubrovin MM, Doubrovina ES, Zanzonico P, Sadelain M, Larson SM, O’Reilly R. In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 2007;67(24):11959–69.PubMedCrossRef
Metadata
Title
In vivo imaging of immune cell trafficking in cancer
Authors
Luisa Ottobrini
Cristina Martelli
Daria Lucia Trabattoni
Mario Clerici
Giovanni Lucignani
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 5/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1687-7

Other articles of this Issue 5/2011

European Journal of Nuclear Medicine and Molecular Imaging 5/2011 Go to the issue