Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 5/2011

01-05-2011 | Original Article

Effect of the positron range of 18F, 68Ga and 124I on PET/CT in lung-equivalent materials

Authors: Gerrit J. Kemerink, Mariëlle G. W. Visser, Renee Franssen, Emiel Beijer, Mariangela Zamburlini, Servé G. E. A. Halders, Boudewijn Brans, Felix M. Mottaghy, Gerrit J. J. Teule

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 5/2011

Login to get access

Abstract

Purpose

The aim of this study was to investigate the effect of positron range on visualization and quantification in 18F, 68Ga and 124I positron emission tomography (PET)/CT of lung-like tissue.

Methods

Different sources were measured in air, in lung-equivalent foams and in water, using a clinical PET/CT and a microPET system. Intensity profiles and curves with the cumulative number of annihilations were derived and numerically characterized.

Results

68Ga and 124I gave similar results. Their intensity profiles in lung-like foam had a peak similar to that for 18F, and tails of very low intensity, but extending over distances of centimetres and containing a large fraction of all annihilations. For 90% recovery, volumes of interest with diameters up to 50 mm were required, and recovery within the 10% intensity isocontour was as low as 30%. In contrast, tailing was minor for 18F.

Conclusion

Lung lesions containing 18F, 68Ga or 124I will be visualized similarly, and at least as sharp as in soft tissue. Nevertheless, for quantification of 68Ga and 124I large volumes of interest are needed for complete activity recovery. For clinical studies containing noise and background, new quantification approaches may have to be developed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Champion C, Le Loirec C. Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET. Phys Med Biol 2007;52:6605–25.PubMedCrossRef Champion C, Le Loirec C. Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET. Phys Med Biol 2007;52:6605–25.PubMedCrossRef
2.
go back to reference Sánchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44–51.PubMedCrossRef Sánchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44–51.PubMedCrossRef
3.
go back to reference Blanco A. Positron range effects on the spatial resolution of RPC-PET. IEEE Nucl Sci Symp Conf Rec 2006;4:2570–3.CrossRef Blanco A. Positron range effects on the spatial resolution of RPC-PET. IEEE Nucl Sci Symp Conf Rec 2006;4:2570–3.CrossRef
4.
go back to reference Jentzen W, Weise R, Kupferschläger J, Freudenberg L, Brandau W, Bares R, et al. A. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 2008;35:611–23.PubMedCrossRef Jentzen W, Weise R, Kupferschläger J, Freudenberg L, Brandau W, Bares R, et al. A. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 2008;35:611–23.PubMedCrossRef
5.
go back to reference Vandenberghe S. Three-dimensional positron emission tomography imaging with 124I and 86Y. Nucl Med Commun 2006;27:237–45.PubMedCrossRef Vandenberghe S. Three-dimensional positron emission tomography imaging with 124I and 86Y. Nucl Med Commun 2006;27:237–45.PubMedCrossRef
6.
go back to reference Robinson S, Julyan PJ, Hastings DL, Zweit J. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I. Phys Med Biol 2004;49:5505–28.PubMedCrossRef Robinson S, Julyan PJ, Hastings DL, Zweit J. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I. Phys Med Biol 2004;49:5505–28.PubMedCrossRef
7.
go back to reference Herzog H, Tellman L, Qaim SM, Spellerberg S, Schmid A, Coenen HH. PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I. Appl Radiat Isot 2002;56:673–9.PubMedCrossRef Herzog H, Tellman L, Qaim SM, Spellerberg S, Schmid A, Coenen HH. PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I. Appl Radiat Isot 2002;56:673–9.PubMedCrossRef
8.
go back to reference Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996;37:1557–62.PubMed Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996;37:1557–62.PubMed
9.
go back to reference Laforest R, Liu X. Image quality with non-standard nuclides in PET. Q J Nucl Med Mol Imaging 2008;52:151–8.PubMed Laforest R, Liu X. Image quality with non-standard nuclides in PET. Q J Nucl Med Mol Imaging 2008;52:151–8.PubMed
10.
go back to reference Alessio A, MacDonald L. Spatially variant positron range modeling derived from CT for PET image reconstruction. IEEE Nucl Sci Symp Conf Rec 2008;MO3-8:3637–40. Alessio A, MacDonald L. Spatially variant positron range modeling derived from CT for PET image reconstruction. IEEE Nucl Sci Symp Conf Rec 2008;MO3-8:3637–40.
11.
go back to reference Palmer MR, Zhu X, Parker A. Modeling and simulation of positron range effects for high resolution PET imaging. IEEE Trans Nucl Sci 2005;52:1391–5.CrossRef Palmer MR, Zhu X, Parker A. Modeling and simulation of positron range effects for high resolution PET imaging. IEEE Trans Nucl Sci 2005;52:1391–5.CrossRef
12.
go back to reference Bahri MA, Plenevaux A, Warnock G, Luxen A, Seret A. NEMA NU4-2008 image quality performance report for the microPET Focus 120 and for various transmission and reconstruction methods. J Nucl Med 2009;50:1730–8.PubMedCrossRef Bahri MA, Plenevaux A, Warnock G, Luxen A, Seret A. NEMA NU4-2008 image quality performance report for the microPET Focus 120 and for various transmission and reconstruction methods. J Nucl Med 2009;50:1730–8.PubMedCrossRef
13.
go back to reference Kalender WA, Fichte H, Bautz W, Zwick A, Rienmüller R, Behr J, et al. Reference values for lung density and structure measured by quantitative CT. In: Pokieser G, Lechner G, editors. Advances in CT III. Berlin: Springer; 1994. p. 290–8. Kalender WA, Fichte H, Bautz W, Zwick A, Rienmüller R, Behr J, et al. Reference values for lung density and structure measured by quantitative CT. In: Pokieser G, Lechner G, editors. Advances in CT III. Berlin: Springer; 1994. p. 290–8.
14.
go back to reference Kemerink GJ, Kruize HH, Lamers RJS, van Engelshoven JMA. Density resolution in quantitative computed tomography of foam and lung. Med Phys 1996;23:1697–708.PubMedCrossRef Kemerink GJ, Kruize HH, Lamers RJS, van Engelshoven JMA. Density resolution in quantitative computed tomography of foam and lung. Med Phys 1996;23:1697–708.PubMedCrossRef
16.
go back to reference Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008;38:167–76.PubMedCrossRef Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008;38:167–76.PubMedCrossRef
Metadata
Title
Effect of the positron range of 18F, 68Ga and 124I on PET/CT in lung-equivalent materials
Authors
Gerrit J. Kemerink
Mariëlle G. W. Visser
Renee Franssen
Emiel Beijer
Mariangela Zamburlini
Servé G. E. A. Halders
Boudewijn Brans
Felix M. Mottaghy
Gerrit J. J. Teule
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 5/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1732-1

Other articles of this Issue 5/2011

European Journal of Nuclear Medicine and Molecular Imaging 5/2011 Go to the issue