Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2011

01-01-2011 | Original Article

Improved quantification in multiple-pinhole SPECT by anatomy-based reconstruction using microCT information

Authors: Christian Vanhove, Michel Defrise, Axel Bossuyt, Tony Lahoutte

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2011

Login to get access

Abstract

Purpose

The aim of this study was to evaluate the potential of anatomy-based reconstruction, using microCT information, to improve quantitative accuracy in multiple-pinhole SPECT.

Methods

Multiple-pinhole SPECT and microCT images were acquired with the Micro Deluxe Phantom using both hot and cold rod inserts. The phantoms were filled with 3.7 MBq/ml of 99mTc. To improve microCT contrast, the phantoms were also filled with contrast agent. Emission images were reconstructed using a one-step-late (OSL) modification of the ordered subsets expectation maximization (OSEM) algorithm for incorporation of microCT information, to encourage smoothing within but not across boundaries. To allow quantification, the OSL OSEM algorithm takes into account imperfect camera motion, collimator response, angular variation of the sensitivity, intrinsic camera resolution, attenuation and scatter. For comparison, the emission images were also reconstructed by OSEM using post-reconstruction filtering and by OSL OSEM using a quadratic prior and an edge-preserving prior. In each rod of the phantoms the recovery coefficient (RC), defined as measured divided by the true activity concentration, was expressed as a function of the noise. Different noise levels were obtained by varying the amount of spatial filtering during or after reconstruction and by the use of binominal deviates.

Results

Compared to conventional OSEM using post-reconstruction filtering and compared to OSL OSEM using a quadratic prior, our study demonstrated that the use of anatomical information during reconstruction significantly improved the quantitative accuracy in both cold and hot rods with a diameter larger than or equal to 2.4 mm. When compared to the edge-preserving prior, the anatomical prior performs significantly better for hot rods with a diameter ≥2.4 mm. For the 4.0-mm hot rods for example, the RC averaged over the different noise levels was 0.67 ± 0.02 when multiple-pinhole SPECT images were reconstructed using anatomical information, compared to 0.54 ± 0.08, 0.60 ± 0.04 and 0.64 ± 0.02 when OSEM in combination with a post-reconstruction filter, OSL OSEM using a quadratic prior and OSL OSEM using a median root prior was used, respectively. For the 4.0-mm cold rods, the RC averaged over the different noise levels was 0.61 ± 0.03 when the multiple-pinhole SPECT images were reconstructed using anatomical information, compared to 0.54 ± 0.07, 0.53 ± 0.08 and 0.60 ± 0.03 when OSEM in combination with a post-reconstruction filter, OSL OSEM using a quadratic prior and OSL OSEM using a median root prior was used, respectively.

Conclusion

Anatomy-based reconstruction using microCT information has the potential to improve quantitative accuracy in multiple-pinhole SPECT.
Literature
1.
go back to reference Vanhove C, Defrise M, Bossuyt A, Lahoutte T. Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information. Eur J Nucl Med Mol Imaging 2009;36:1049–63.CrossRefPubMed Vanhove C, Defrise M, Bossuyt A, Lahoutte T. Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information. Eur J Nucl Med Mol Imaging 2009;36:1049–63.CrossRefPubMed
2.
go back to reference Lee K, Miyaoka RS, Lewellen TK, Alessio AM, Kinahan PE. Impact on image noise of incorporating detector blurring into image reconstruction for a small animal PET scanner. IEEE Trans Med Imaging 2009;56:2769–76. Lee K, Miyaoka RS, Lewellen TK, Alessio AM, Kinahan PE. Impact on image noise of incorporating detector blurring into image reconstruction for a small animal PET scanner. IEEE Trans Med Imaging 2009;56:2769–76.
3.
go back to reference Qi J, Leahy RM. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans Med Imaging 2000;19:493–506.CrossRefPubMed Qi J, Leahy RM. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans Med Imaging 2000;19:493–506.CrossRefPubMed
4.
go back to reference Spinelli AE, D’Ambrosio D, Fiacchi G, Boschi S, Franchi R, Marengo M. Pixel-based partial volume correction of small animal PET images using point spread function system characterization: evaluation of effects on cardiac output, perfusion and metabolic rate using parametric images. IEEE Nucl Sci Symp Conf Rec 2008;1–9:3534–9. Spinelli AE, D’Ambrosio D, Fiacchi G, Boschi S, Franchi R, Marengo M. Pixel-based partial volume correction of small animal PET images using point spread function system characterization: evaluation of effects on cardiac output, perfusion and metabolic rate using parametric images. IEEE Nucl Sci Symp Conf Rec 2008;1–9:3534–9.
5.
go back to reference van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji CG, et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 2009;50:599–605.CrossRefPubMed van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji CG, et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 2009;50:599–605.CrossRefPubMed
6.
go back to reference Vanhove C, Andreyev A, Defrise M, Nuyts J, Bossuyt A. Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study. Eur J Nucl Med Mol Imaging 2007;34:170–80.CrossRefPubMed Vanhove C, Andreyev A, Defrise M, Nuyts J, Bossuyt A. Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study. Eur J Nucl Med Mol Imaging 2007;34:170–80.CrossRefPubMed
7.
go back to reference Müller-Gärtner H, Links J, Prince J, Bryan R, McVeigh E, Leal J, et al. Measurement of radiotracer concentration in brain gray matter using position emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83.PubMed Müller-Gärtner H, Links J, Prince J, Bryan R, McVeigh E, Leal J, et al. Measurement of radiotracer concentration in brain gray matter using position emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83.PubMed
8.
go back to reference Lehnert W, Gregoire MC, Hu X, Meikle SR. An investigation of partial volume effect and partial volume correction in small animal positron emission tomography (PET) of the rat brain. IEEE Nucl Sci Symp Conf Rec 2008;1–9:4485–90. Lehnert W, Gregoire MC, Hu X, Meikle SR. An investigation of partial volume effect and partial volume correction in small animal positron emission tomography (PET) of the rat brain. IEEE Nucl Sci Symp Conf Rec 2008;1–9:4485–90.
9.
go back to reference Boening G, Pretorius PH, King MA. Study of relative quantification of Tc-99 m with partial volume effect and spillover correction for SPECT oncology imaging. IEEE Trans Med Imaging 2006;53:1205–12. Boening G, Pretorius PH, King MA. Study of relative quantification of Tc-99 m with partial volume effect and spillover correction for SPECT oncology imaging. IEEE Trans Med Imaging 2006;53:1205–12.
10.
go back to reference Boening G, Protorius PH, King MA. Study of relative quantification of Tc-99m with partial volume effect and spillover correction for SPECT oncology imaging. IEEE Nucl Sci Symp Conf Rec 2004;1–7:2705–9.CrossRef Boening G, Protorius PH, King MA. Study of relative quantification of Tc-99m with partial volume effect and spillover correction for SPECT oncology imaging. IEEE Nucl Sci Symp Conf Rec 2004;1–7:2705–9.CrossRef
11.
go back to reference Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76.CrossRefPubMed Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76.CrossRefPubMed
12.
go back to reference Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol 1996;41:2497–517.CrossRefPubMed Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol 1996;41:2497–517.CrossRefPubMed
13.
go back to reference Bowsher JE, Johnson VE, Turkington TG, Jaszczak RJ, Floyd CE, Coleman RE. Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging 1996;15:673–86.CrossRefPubMed Bowsher JE, Johnson VE, Turkington TG, Jaszczak RJ, Floyd CE, Coleman RE. Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging 1996;15:673–86.CrossRefPubMed
14.
go back to reference Comtat C, Kinahan PE, Fessler JA, Beyer T, Townsend DW, Defrise M, et al. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol 2002;47:1–20.CrossRefPubMed Comtat C, Kinahan PE, Fessler JA, Beyer T, Townsend DW, Defrise M, et al. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol 2002;47:1–20.CrossRefPubMed
15.
go back to reference Fessler JA, Clinthorne NH, Rogers WL. Regularized emission image reconstruction using imperfect side information. IEEE Trans Med Imaging 1992;39:1464–71. Fessler JA, Clinthorne NH, Rogers WL. Regularized emission image reconstruction using imperfect side information. IEEE Trans Med Imaging 1992;39:1464–71.
16.
go back to reference Gindi G, Lee M, Rangarajan A, Zubal IG. Bayesian reconstruction of functional images using anatomical information as priors. IEEE Trans Med Imaging 1993;12:670–80.CrossRefPubMed Gindi G, Lee M, Rangarajan A, Zubal IG. Bayesian reconstruction of functional images using anatomical information as priors. IEEE Trans Med Imaging 1993;12:670–80.CrossRefPubMed
17.
go back to reference Leahy R, Yan X. Incorporation of anatomical MR data for improved functional imaging with PET. Information processing in medical imaging, 12th International Conference, IPMI ’91 Proceedings. Lect Notes Comput Sci 1991;511:105–20. Leahy R, Yan X. Incorporation of anatomical MR data for improved functional imaging with PET. Information processing in medical imaging, 12th International Conference, IPMI ’91 Proceedings. Lect Notes Comput Sci 1991;511:105–20.
18.
go back to reference Nuyts J, Baete K, Bequé D, Dupont P. Comparison between MAP and postprocessed ML for image reconstruction in emission tomography when anatomical knowledge is available. IEEE Trans Med Imaging 2005;24:667–75.CrossRefPubMed Nuyts J, Baete K, Bequé D, Dupont P. Comparison between MAP and postprocessed ML for image reconstruction in emission tomography when anatomical knowledge is available. IEEE Trans Med Imaging 2005;24:667–75.CrossRefPubMed
19.
go back to reference Ouyang X, Wong WH, Johnson VE, Hu XP, Chen CT. Incorporation of correlated structural images in PET image reconstruction. IEEE Trans Med Imaging 1994;13:627–40.CrossRefPubMed Ouyang X, Wong WH, Johnson VE, Hu XP, Chen CT. Incorporation of correlated structural images in PET image reconstruction. IEEE Trans Med Imaging 1994;13:627–40.CrossRefPubMed
20.
go back to reference Somayajula S, Asma E, Leahy RM. PET image reconstruction using anatomical information through mutual information based priors. IEEE Nucl Sci Symp Conf Rec 2005;1–5:2722–6.CrossRef Somayajula S, Asma E, Leahy RM. PET image reconstruction using anatomical information through mutual information based priors. IEEE Nucl Sci Symp Conf Rec 2005;1–5:2722–6.CrossRef
21.
go back to reference Lehovich A, Bruyant PP, Gifford HS, Schneider PB, Squires S, Licho R, et al. Impact on reader performance for lesion-detection/ localization tasks of anatomical priors in SPECT reconstruction. IEEE Trans Med Imaging 2009;28:1459–67.CrossRefPubMed Lehovich A, Bruyant PP, Gifford HS, Schneider PB, Squires S, Licho R, et al. Impact on reader performance for lesion-detection/ localization tasks of anatomical priors in SPECT reconstruction. IEEE Trans Med Imaging 2009;28:1459–67.CrossRefPubMed
22.
go back to reference Lehovich A, Gifford HC, Schneider PB, King MA. Choosing anatomical-prior strength for MAP SPECT reconstruction to maximize lesion detectability. IEEE Nucl Sci Symp Conf Rec (1997) 2007;6:4222–5. Lehovich A, Gifford HC, Schneider PB, King MA. Choosing anatomical-prior strength for MAP SPECT reconstruction to maximize lesion detectability. IEEE Nucl Sci Symp Conf Rec (1997) 2007;6:4222–5.
23.
go back to reference Bruyant PP, Gifford HC, Gindi G, King MA. Numerical observer study of MAP-OSEM regularization methods with anatomical priors for lesion detection in 67Ga images. IEEE Trans Med Imaging 2004;51:193–7. Bruyant PP, Gifford HC, Gindi G, King MA. Numerical observer study of MAP-OSEM regularization methods with anatomical priors for lesion detection in 67Ga images. IEEE Trans Med Imaging 2004;51:193–7.
24.
go back to reference Alessio AM, Kinahan PE. Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys 2006;33:4095–103.CrossRefPubMed Alessio AM, Kinahan PE. Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys 2006;33:4095–103.CrossRefPubMed
25.
go back to reference Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1990;9:84–93.CrossRefPubMed Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1990;9:84–93.CrossRefPubMed
26.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.CrossRefPubMed Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.CrossRefPubMed
27.
go back to reference Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMed Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMed
28.
go back to reference Li JY, Jaszczak RJ, Coleman RE. Maximum likelihood reconstruction for pinhole SPECT with a displaced center-of-rotation. IEEE Trans Med Imaging 1995;14:407–9.CrossRefPubMed Li JY, Jaszczak RJ, Coleman RE. Maximum likelihood reconstruction for pinhole SPECT with a displaced center-of-rotation. IEEE Trans Med Imaging 1995;14:407–9.CrossRefPubMed
29.
go back to reference Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27:140–6.CrossRefPubMed Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27:140–6.CrossRefPubMed
30.
go back to reference Baete K, Nuyts J, Van Laere K, Van Paesschen W, Ceyssens S, De Ceuninck L, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 2004;23:305–17.CrossRefPubMed Baete K, Nuyts J, Van Laere K, Van Paesschen W, Ceyssens S, De Ceuninck L, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 2004;23:305–17.CrossRefPubMed
31.
go back to reference Mortelmans L, Nuyts J, Van Pamel G, Van den Maegdenbergh V, De Roo M, Suetens P. A new thresholding method for volume determination by SPECT. Eur J Nucl Med 1986;12:284–90.CrossRefPubMed Mortelmans L, Nuyts J, Van Pamel G, Van den Maegdenbergh V, De Roo M, Suetens P. A new thresholding method for volume determination by SPECT. Eur J Nucl Med 1986;12:284–90.CrossRefPubMed
32.
go back to reference Fessler JA. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging 1994;13:290–300.CrossRefPubMed Fessler JA. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging 1994;13:290–300.CrossRefPubMed
33.
go back to reference Bequé D, Nuyts J, Bormans G, Suetens P, Dupont P. Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 2003;22:599–612.CrossRefPubMed Bequé D, Nuyts J, Bormans G, Suetens P, Dupont P. Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 2003;22:599–612.CrossRefPubMed
34.
go back to reference Bequé D, Nuyts J, Suetens P, Bormans G. Optimization of geometrical calibration in pinhole SPECT. IEEE Trans Med Imaging 2005;24:180–90.CrossRefPubMed Bequé D, Nuyts J, Suetens P, Bormans G. Optimization of geometrical calibration in pinhole SPECT. IEEE Trans Med Imaging 2005;24:180–90.CrossRefPubMed
35.
go back to reference Defrise M, Vanhove C, Nuyts J. Perturbative refinement of the geometric calibration in pinhole SPECT. IEEE Trans Med Imaging 2008;27:204–14.CrossRefPubMed Defrise M, Vanhove C, Nuyts J. Perturbative refinement of the geometric calibration in pinhole SPECT. IEEE Trans Med Imaging 2008;27:204–14.CrossRefPubMed
36.
go back to reference Gullberg GT, Huesman RH, Malko JA, Pelc NJ, Budinger TF. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985;30:799–816.CrossRefPubMed Gullberg GT, Huesman RH, Malko JA, Pelc NJ, Budinger TF. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985;30:799–816.CrossRefPubMed
37.
go back to reference Hwang AB, Hasegawa BH. Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 2005;32:2799–804.CrossRefPubMed Hwang AB, Hasegawa BH. Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 2005;32:2799–804.CrossRefPubMed
38.
go back to reference Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10:408–12.CrossRefPubMed Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10:408–12.CrossRefPubMed
39.
go back to reference King MA, deVries DJ, Pan TS, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Med Imaging 1997;44:1140–5. King MA, deVries DJ, Pan TS, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Med Imaging 1997;44:1140–5.
40.
go back to reference Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2:131–7.CrossRefPubMed Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2:131–7.CrossRefPubMed
41.
go back to reference Vanhove C, Defrise M, Lahoutte T, Bossuyt A. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging 2008;35:407–15.CrossRefPubMed Vanhove C, Defrise M, Lahoutte T, Bossuyt A. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging 2008;35:407–15.CrossRefPubMed
42.
go back to reference Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 1997;24:258–65.PubMed Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 1997;24:258–65.PubMed
43.
go back to reference Seret A. Median root prior and ordered subsets in Bayesian image reconstruction of single-photon emission tomography. Eur J Nucl Med 1998;25:215–9.CrossRefPubMed Seret A. Median root prior and ordered subsets in Bayesian image reconstruction of single-photon emission tomography. Eur J Nucl Med 1998;25:215–9.CrossRefPubMed
44.
go back to reference Barrett HH, Myers KJ. Foundations of image science. Section 11.1.3. Hoboken: Wiley; 2004. Barrett HH, Myers KJ. Foundations of image science. Section 11.1.3. Hoboken: Wiley; 2004.
45.
go back to reference Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53:3099–112.CrossRefPubMed Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53:3099–112.CrossRefPubMed
46.
go back to reference Sohlberg A, Lensu S, Jolkkonen J, Tuomisto L, Ruotsalainen U, Kuikka JT. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction. Eur J Nucl Med Mol Imaging 2004;31:986–94.CrossRefPubMed Sohlberg A, Lensu S, Jolkkonen J, Tuomisto L, Ruotsalainen U, Kuikka JT. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction. Eur J Nucl Med Mol Imaging 2004;31:986–94.CrossRefPubMed
47.
go back to reference Forstrom LA, Dunn WL, O’Connor MK, Decklever TD, Hardyman TJ, Howarth DM. Technical pitfalls in image acquisition, processing, and display. Semin Nucl Med 1996;26:278–94.CrossRefPubMed Forstrom LA, Dunn WL, O’Connor MK, Decklever TD, Hardyman TJ, Howarth DM. Technical pitfalls in image acquisition, processing, and display. Semin Nucl Med 1996;26:278–94.CrossRefPubMed
48.
go back to reference Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H. Effect of spatial resolution on SPECT quantification values. J Nucl Med 1989;30:508–14.PubMed Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H. Effect of spatial resolution on SPECT quantification values. J Nucl Med 1989;30:508–14.PubMed
49.
go back to reference Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods 2010;50:2–13.CrossRefPubMed Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods 2010;50:2–13.CrossRefPubMed
50.
go back to reference Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, et al. Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol 2009;11:128–35.CrossRefPubMed Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, et al. Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol 2009;11:128–35.CrossRefPubMed
51.
go back to reference Beekman F, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging 2007;34:1410–4.CrossRefPubMed Beekman F, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging 2007;34:1410–4.CrossRefPubMed
Metadata
Title
Improved quantification in multiple-pinhole SPECT by anatomy-based reconstruction using microCT information
Authors
Christian Vanhove
Michel Defrise
Axel Bossuyt
Tony Lahoutte
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1627-6

Other articles of this Issue 1/2011

European Journal of Nuclear Medicine and Molecular Imaging 1/2011 Go to the issue