Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2007

01-02-2007 | Original article

Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study

Authors: Christian Vanhove, Andriy Andreyev, Michel Defrise, Johan Nuyts, Axel Bossuyt

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2007

Login to get access

Abstract

Purpose

Low sensitivity can become a major problem when very small pinholes are used in SPECT imaging. Although a larger pinhole aperture will improve the sensitivity, this will be at the cost of the spatial resolution. With a view to improving the resolution–sensitivity trade-off, this paper explores an iterative reconstruction algorithm that models the pinhole aperture based on multi-ray projections.

Methods

This new implementation was validated using simulated data and phantom experiments. Two approaches were investigated. Firstly, the pinhole aperture was modelled in both the forward and the back projector. Secondly, the dual matrix implementation was investigated by modelling the pinhole aperture only in the forward projector. The systematic error, the full-width at half-maximum (FWHM) and the statistical error were quantified using the simulated data. Experimental phantom data were acquired for visual comparison with the reconstructions obtained from the simulated data.

Results

For a predefined number of iterations, the systematic error, the FWHM and the statistical error could be decreased when the pinhole aperture was modelled during iterative reconstruction. For a fixed, predefined statistical error of ±10%, smaller systematic errors and smaller FWHM were obtained when modelling the pinhole opening. When the dual matrix implementation was used, equivalent results could be obtained as when modelling the pinhole opening in both the forward and the back projector.

Conclusion

The multi-ray method to accomplish resolution recovery during the reconstruction of pinhole SPECT projection images offers a better trade-off between spatial resolution and noise compared with a reconstruction which does not model the pinhole aperture.
Literature
1.
go back to reference Weber DA, Ivanovic M, Franceschi D, Strand SE, Erlandsson K, Franceschi M, et al. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994;35(2):342–8.PubMed Weber DA, Ivanovic M, Franceschi D, Strand SE, Erlandsson K, Franceschi M, et al. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994;35(2):342–8.PubMed
2.
go back to reference Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994;39:425–37.PubMedCrossRef Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994;39:425–37.PubMedCrossRef
3.
go back to reference Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995;36(12):2282–7.PubMed Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995;36(12):2282–7.PubMed
4.
go back to reference Weber DA, Ivanovic M Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 1995;36(12):2287–9.PubMed Weber DA, Ivanovic M Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 1995;36(12):2287–9.PubMed
5.
go back to reference Yukihiro M, Inoue T, Iwasaki T, Tomiyoshi K, Erlandsson K, Endo K. Myocardial infarction in rats: high-resolution single-photon emission tomographic imaging with a pinhole collimator. Eur J Nucl Med 1996;23(8):896–900.PubMedCrossRef Yukihiro M, Inoue T, Iwasaki T, Tomiyoshi K, Erlandsson K, Endo K. Myocardial infarction in rats: high-resolution single-photon emission tomographic imaging with a pinhole collimator. Eur J Nucl Med 1996;23(8):896–900.PubMedCrossRef
6.
go back to reference Weber DA, Ivanovic M. Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 1999;6(3):332–44.PubMedCrossRef Weber DA, Ivanovic M. Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 1999;6(3):332–44.PubMedCrossRef
7.
go back to reference Habraken JB, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 2001;42(12):1863–9.PubMed Habraken JB, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 2001;42(12):1863–9.PubMed
8.
go back to reference Zeniya T, Watabe H, Aoi T, Kim KM, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT. Eur J Nucl Med Mol Imaging. 2004;31(8):1166–72.PubMedCrossRef Zeniya T, Watabe H, Aoi T, Kim KM, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT. Eur J Nucl Med Mol Imaging. 2004;31(8):1166–72.PubMedCrossRef
9.
go back to reference Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50:R45–61.PubMedCrossRef Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50:R45–61.PubMedCrossRef
10.
go back to reference Meikle SR, Kench P, Weisenberger AG, Wojcik R, Smith MF, Majewski S, et al. A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci 2002;49:2167–71.CrossRef Meikle SR, Kench P, Weisenberger AG, Wojcik R, Smith MF, Majewski S, et al. A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci 2002;49:2167–71.CrossRef
11.
go back to reference Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multi-pinhole collimation. IEEE Trans Nucl Sci 2003;50:315–20.CrossRef Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multi-pinhole collimation. IEEE Trans Nucl Sci 2003;50:315–20.CrossRef
12.
go back to reference Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92.PubMedCrossRef Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92.PubMedCrossRef
13.
go back to reference Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005;46(7):1194–200.PubMed Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005;46(7):1194–200.PubMed
14.
go back to reference Zeng GL, Hsieh YL, Gullberg GT. A rotating and warping projector-backprojector pair for fan-beam and cone-beam iterative algorithms. IEEE Trans Nucl Sci 1994;41:2807–11.CrossRef Zeng GL, Hsieh YL, Gullberg GT. A rotating and warping projector-backprojector pair for fan-beam and cone-beam iterative algorithms. IEEE Trans Nucl Sci 1994;41:2807–11.CrossRef
15.
go back to reference Bai C, Zeng GL, Gullberg GT, DiFillippo F, Miller S. Slab-by-slab blurring model for geometric point response correction and attenuation correction using iterative reconstruction algorithms. IEEE Trans Nucl Sci 1998;45:2168–72.CrossRef Bai C, Zeng GL, Gullberg GT, DiFillippo F, Miller S. Slab-by-slab blurring model for geometric point response correction and attenuation correction using iterative reconstruction algorithms. IEEE Trans Nucl Sci 1998;45:2168–72.CrossRef
16.
go back to reference Brown JK, Kalki K, Heanue J, Hasegawa BH. Quantitative SPECT reconstruction using multi-ray projection integrators. IEEE Nuclear Science Symposium and Medical Imaging Conference Record 1995;2:1272–6.CrossRef Brown JK, Kalki K, Heanue J, Hasegawa BH. Quantitative SPECT reconstruction using multi-ray projection integrators. IEEE Nuclear Science Symposium and Medical Imaging Conference Record 1995;2:1272–6.CrossRef
17.
go back to reference Zeng GL, Gullberg GT, Tsui BMW. Three dimensional iterative reconstruction algorithms with attenuation and geometric point response correction. IEEE Trans Nucl Sci 1991;38:693–702.CrossRef Zeng GL, Gullberg GT, Tsui BMW. Three dimensional iterative reconstruction algorithms with attenuation and geometric point response correction. IEEE Trans Nucl Sci 1991;38:693–702.CrossRef
18.
go back to reference Kamphuis C, Beekman FJ, van Rijk PP, Viergever MA. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 1998;25(1):8–18.PubMedCrossRef Kamphuis C, Beekman FJ, van Rijk PP, Viergever MA. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 1998;25(1):8–18.PubMedCrossRef
19.
go back to reference Beque D, Nuyts J, Bormans G, Suetens P, Dupont P. Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 2003;22(5):599–612.PubMedCrossRef Beque D, Nuyts J, Bormans G, Suetens P, Dupont P. Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 2003;22(5):599–612.PubMedCrossRef
20.
go back to reference Beque D, Nuyts J, Suetens P, Bormans G. Optimization of geometrical calibration in pinhole SPECT. IEEE Trans Med Imaging 2005;24(2):180–90.PubMedCrossRef Beque D, Nuyts J, Suetens P, Bormans G. Optimization of geometrical calibration in pinhole SPECT. IEEE Trans Med Imaging 2005;24(2):180–90.PubMedCrossRef
21.
go back to reference Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27(2):140–6.PubMedCrossRef Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27(2):140–6.PubMedCrossRef
22.
go back to reference Abramowitz M, Stegun I. Handbook of mathematical functions. Dover 1972. Abramowitz M, Stegun I. Handbook of mathematical functions. Dover 1972.
Metadata
Title
Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study
Authors
Christian Vanhove
Andriy Andreyev
Michel Defrise
Johan Nuyts
Axel Bossuyt
Publication date
01-02-2007
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2007
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0225-0

Other articles of this Issue 2/2007

European Journal of Nuclear Medicine and Molecular Imaging 2/2007 Go to the issue