Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2005

01-03-2005 | Molecular Imaging

Positron tomographic assessment of androgen receptors in prostatic carcinoma

Authors: Farrokh Dehdashti, Joel Picus, Jeff M. Michalski, Carmen S. Dence, Barry A. Siegel, John A. Katzenellenbogen, Michael J. Welch

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2005

Login to get access

Abstract

Purpose

The purpose of this study was to evaluate the feasibility of androgen receptor (AR) imaging with 16β-[18F]fluoro-5α-dihydrotestosterone (FDHT) by positron emission tomography (PET) and to assess the binding selectivity of FDHT to AR in patients with prostate cancer.

Methods

Twenty men (age range 56–87 years) with advanced prostate cancer were studied. All except one had metastatic disease confirmed by biopsy and/or radiological studies. One patient who had radiological findings suggesting a single hepatic metastasis was found to have focal fatty infiltration on biopsy obtained after FDHT-PET and was excluded from further data analysis. FDHT uptake was assessed semiquantitatively by determination of the standardized uptake value (SUV) and tumor-to-muscle ratio (T/M). Additionally, to assess the AR binding selectivity of FDHT, patients with one or more foci of abnormally increased FDHT accumulation were studied after administration of an AR antagonist (flutamide).

Results

Conventional imaging demonstrated innumerable lesions in two patients and 43 lesions in the remaining 17 patients with advanced prostate cancer. FDHT-PET was positive in 12 of 19 patients (sensitivity of 63%), including the two patients with innumerable lesions. FDHT-PET detected 24 of 28 known lesions (86%) in the remaining ten patients. In addition, FDHT-PET detected 17 unsuspected lesions in five of these ten patients. All 12 patients with positive FDHT-PET underwent a repeat PET study after receiving flutamide for 1 day (250 mg t.i.d.). In all of these patients, there was a decrease in tumor FDHT uptake after flutamide; the mean (± standard deviation) SUV and T/M decreased from 7.0±4.7 and 6.9±3.9, respectively, to 3.0±1.5 and 3.0±1.6, respectively (p=0.002). The mean PSA in patients with positive FDHT-PET was significantly higher than that in patients with negative FDHT-PET (p=0.006).

Conclusion

Our results document the feasibility of PET imaging of prostate cancer with FDHT and suggest that tumor uptake of FDHT is a receptor-mediated process. Positive PET studies were associated with higher PSA levels and thus, presumably, with greater tumor burden.
Literature
1.
go back to reference Huggins C. The effect of castration, of estrogen and of androgen injections on serum phosphatases in metastatic carcinoma of the prostate: studies on prostate cancer. Cancer Res 1941;1:293–7. Huggins C. The effect of castration, of estrogen and of androgen injections on serum phosphatases in metastatic carcinoma of the prostate: studies on prostate cancer. Cancer Res 1941;1:293–7.
2.
go back to reference Buchanan G, Irvine RA, Coetzee GA, Tilley WD. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev 2001;20:207–23.CrossRef Buchanan G, Irvine RA, Coetzee GA, Tilley WD. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev 2001;20:207–23.CrossRef
3.
go back to reference Loblaw DA, Mendelson DS, Talcott JA, Virgo KS, Somerfield MR, Ben-Josef E, et al. American Society of Clinical Oncology recommendations for the initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer. J Clin Oncol 2004;22:2927–41. Loblaw DA, Mendelson DS, Talcott JA, Virgo KS, Somerfield MR, Ben-Josef E, et al. American Society of Clinical Oncology recommendations for the initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer. J Clin Oncol 2004;22:2927–41.
4.
go back to reference Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988;169:45–8.PubMed Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988;169:45–8.PubMed
5.
go back to reference McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, et al. Positron tomographic assessment of 16α-[18F]fluoro-17β-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991;32:1526–31.PubMed McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, et al. Positron tomographic assessment of 16α-[18F]fluoro-17β-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991;32:1526–31.PubMed
6.
go back to reference Dehdashti F, McGuire AH, Van Brocklin HF, Siegel BA, Andriole DP, Griffeth LK, et al. Assessment of 21-[18F]fluoro-16 α-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 1991;32:1532–7.PubMed Dehdashti F, McGuire AH, Van Brocklin HF, Siegel BA, Andriole DP, Griffeth LK, et al. Assessment of 21-[18F]fluoro-16 α-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 1991;32:1532–7.PubMed
7.
go back to reference Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, et al. Positron tomographic assessment of estrogen receptors in breast cancer. Comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995;36:1766–74.PubMed Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, et al. Positron tomographic assessment of estrogen receptors in breast cancer. Comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995;36:1766–74.PubMed
8.
go back to reference Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen JA, Welch MJ, Siegel BA. PET assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999;26:51–6.CrossRefPubMed Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen JA, Welch MJ, Siegel BA. PET assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999;26:51–6.CrossRefPubMed
9.
go back to reference Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose and 16α-[18F]fluoro-17β-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 1996;2:933–9. Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose and 16α-[18F]fluoro-17β-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 1996;2:933–9.
10.
go back to reference Bonasera TA, O‘Neil JP, Xu M, Dobkin JA, Cutler PD, Lich LL, et al. Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med 1996;37:1009–15.PubMed Bonasera TA, O‘Neil JP, Xu M, Dobkin JA, Cutler PD, Lich LL, et al. Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med 1996;37:1009–15.PubMed
11.
go back to reference Liu A, Dence CS, Welch MJ, Katzenellenbogen JA. Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med 1992;33:724–34.PubMed Liu A, Dence CS, Welch MJ, Katzenellenbogen JA. Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med 1992;33:724–34.PubMed
12.
go back to reference Kubota K, Matsuzawa T, Ito M, Ito K, Fujiwara T, Abe Y, et al. Lung tumor imaging by positron emission tomography using C-11 L-methionine. J Nucl Med 1985;26:37–42. Kubota K, Matsuzawa T, Ito M, Ito K, Fujiwara T, Abe Y, et al. Lung tumor imaging by positron emission tomography using C-11 L-methionine. J Nucl Med 1985;26:37–42.
13.
go back to reference Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics 2005. CA Cancer J Clin 2005;55:10–30. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics 2005. CA Cancer J Clin 2005;55:10–30.
14.
go back to reference Thenot S, Charpin M, Bonnet S, Cavailles V. Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol Cell Endocrinol 1999;156:85–93.CrossRef Thenot S, Charpin M, Bonnet S, Cavailles V. Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol Cell Endocrinol 1999;156:85–93.CrossRef
15.
go back to reference Kozlowski JM, Ellis WJ, Grayhack JT. Advanced prostatic carcinoma. Early versus late endocrine therapy. Urol Clin North Am 1991;18:15–24. Kozlowski JM, Ellis WJ, Grayhack JT. Advanced prostatic carcinoma. Early versus late endocrine therapy. Urol Clin North Am 1991;18:15–24.
16.
go back to reference Hyytinen ER, Haapala K, Thompson J, Lappalainen I, Roiha M, Rantala I, et al. Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Lab Invest 2002;82:1591–8. Hyytinen ER, Haapala K, Thompson J, Lappalainen I, Roiha M, Rantala I, et al. Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Lab Invest 2002;82:1591–8.
17.
go back to reference Wong CI, Zhou ZX, Sar M, Wilson EM. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J Biol Chem 1993;268:19004–12. Wong CI, Zhou ZX, Sar M, Wilson EM. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J Biol Chem 1993;268:19004–12.
18.
go back to reference Culig Z, Hobisch A, Hittmair A, Peterziel H, Cato AC, Bartsch G, et al. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate 1998;35:63–70.CrossRef Culig Z, Hobisch A, Hittmair A, Peterziel H, Cato AC, Bartsch G, et al. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate 1998;35:63–70.CrossRef
19.
go back to reference Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and over expression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001;61:3550–5. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and over expression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001;61:3550–5.
20.
go back to reference Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 1999;96:5458–63.CrossRef Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 1999;96:5458–63.CrossRef
21.
go back to reference Bentel JM, Tilley WD. Androgen receptors in prostate cancer. J Endocrinol 1996;151:1–11.CrossRef Bentel JM, Tilley WD. Androgen receptors in prostate cancer. J Endocrinol 1996;151:1–11.CrossRef
22.
go back to reference Sadar MD, Hussain M, Bruchovsky N. Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer 1999;6:487–502.CrossRef Sadar MD, Hussain M, Bruchovsky N. Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer 1999;6:487–502.CrossRef
23.
go back to reference Jenster G. The role of the androgen receptor in the development and progression of prostate cancer. Semin Oncol 1999;26:407–21. Jenster G. The role of the androgen receptor in the development and progression of prostate cancer. Semin Oncol 1999;26:407–21.
24.
go back to reference Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 2004;45:366–73. Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 2004;45:366–73.
Metadata
Title
Positron tomographic assessment of androgen receptors in prostatic carcinoma
Authors
Farrokh Dehdashti
Joel Picus
Jeff M. Michalski
Carmen S. Dence
Barry A. Siegel
John A. Katzenellenbogen
Michael J. Welch
Publication date
01-03-2005
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2005
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-005-1764-5

Other articles of this Issue 3/2005

European Journal of Nuclear Medicine and Molecular Imaging 3/2005 Go to the issue