Skip to main content
Top
Published in: Skeletal Radiology 6/2023

10-11-2022 | Scientific Article

Helical CT versus intermittent CT fluoroscopic guidance for musculoskeletal needle biopsies: impact on radiation exposure, procedure time, diagnostic yield, and adverse events

Authors: A. M. Cahalane, S. Habibollahi, S. J. Staffa, K. Yang, F. J. Fintelmann, C. Y. Chang

Published in: Skeletal Radiology | Issue 6/2023

Login to get access

Abstract

Objective

Image-guided percutaneous needle biopsies are essential in the workup of musculoskeletal (MSK) lesions. While helical CT (HCT) is well established, intermittent CT fluoroscopy (iCTF) is an increasingly used alternative. The purpose of this study is to establish whether differences in subject radiation exposure, procedure time, yield, or adverse events exist between HCT and iCTF guidance.

Materials and methods

This retrospective cohort study included consecutive MSK needle biopsies performed on a single-CT scanner over a 12-month period at a tertiary academic center. Subject demographics, radiation dose, and outcomes were abstracted from the medical record. Comparisons between the two cohorts were performed using Student’s t-test for continuous data and using Fisher’s exact test for categorical data and a two-tailed p value less than 0.05 was considered significant.

Results

Two hundred sixteen adults (115 (53.2%) females) with a mean age of 58.8 ± 18.4 years, underwent 216 biopsies (109 (50.5%) HCT guided, 107 (49.5%) iCTF guided) between June 2017 and June 2018. Dose-length product (DLP) and volume CT dose index (CTDIvol) were significantly higher for the HCT cohort (HCT 698.9 ± 400.8 mGycm vs iCTF 312.8 ± 170.8 mGycm; p < 0.005 and HCT 19.1 mGy ± 8.8 vs iCTF 6.9 mGy ± 1.5, p < 0.001). No significant difference in diagnostic yield, procedure time, or adverse event rate was identified.

Conclusion

For CT-guided MSK needle biopsies, iCTF decreases subject radiation dose compared to HCT without negatively affecting outcomes. iCTF should be strongly considered by radiologists performing MSK biopsies given the reduced patient radiation exposure.
Literature
1.
go back to reference Stanborough RO, Long JR, Garner HW. Bone and soft tissue tumors: interventional techniques for diagnosis and treatment. Radiol Clin North Am. 2022;60(2):311–26.CrossRefPubMed Stanborough RO, Long JR, Garner HW. Bone and soft tissue tumors: interventional techniques for diagnosis and treatment. Radiol Clin North Am. 2022;60(2):311–26.CrossRefPubMed
2.
go back to reference Silverman SG, Bloom DA, Seltzer SE, Tempany CM, Adams DF. Needle-tip localization during CT-guided abdominal biopsy: comparison of conventional and spiral CT. AJR Am J Roentgenol. 1992;159(5):1095–7.CrossRefPubMed Silverman SG, Bloom DA, Seltzer SE, Tempany CM, Adams DF. Needle-tip localization during CT-guided abdominal biopsy: comparison of conventional and spiral CT. AJR Am J Roentgenol. 1992;159(5):1095–7.CrossRefPubMed
3.
go back to reference Sarti M, Brehmer WP, Gay SB. Low-dose techniques in CT-guided interventions. Radiographics. 2012;32(4):1109–19 (discussion 1119–1120).CrossRefPubMed Sarti M, Brehmer WP, Gay SB. Low-dose techniques in CT-guided interventions. Radiographics. 2012;32(4):1109–19 (discussion 1119–1120).CrossRefPubMed
4.
go back to reference Goiffon RJ, Best TD, Wrobel MM, McDermott S, Sharma A, Chang CY, et al. Reducing time and patient radiation of computed tomography-guided thoracic needle biopsies with single-rotation axial acquisitions: an alternative to “CT fluoroscopy.” J Thorac Imaging. 2021;36(6):389–96.CrossRefPubMed Goiffon RJ, Best TD, Wrobel MM, McDermott S, Sharma A, Chang CY, et al. Reducing time and patient radiation of computed tomography-guided thoracic needle biopsies with single-rotation axial acquisitions: an alternative to “CT fluoroscopy.” J Thorac Imaging. 2021;36(6):389–96.CrossRefPubMed
5.
go back to reference Carlson SK, Bender CE, Classic KL, Zink FE, Quam JP, Ward EM, et al. Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology. 2001;219(2):515–20.CrossRefPubMed Carlson SK, Bender CE, Classic KL, Zink FE, Quam JP, Ward EM, et al. Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology. 2001;219(2):515–20.CrossRefPubMed
6.
go back to reference Ghaye B, Dondelinger RF, Dewe W. Percutaneous CT-guided lung biopsy: sequential versus spiral scanning. A randomized prospective study. Eur Radiol. 1999;9(7):1317–20.CrossRefPubMed Ghaye B, Dondelinger RF, Dewe W. Percutaneous CT-guided lung biopsy: sequential versus spiral scanning. A randomized prospective study. Eur Radiol. 1999;9(7):1317–20.CrossRefPubMed
7.
go back to reference Trumm CG, Burgard C, Deger C, Stahl R, Forbrig R, D’Anastasi M. Intermittent quick-check CT fluoroscopy-guided percutaneous drainage placement in patients with infected renal and perirenal fluid collections: 11-year experience. Diagn Interv Radiol. 2021;27(3):378–85.CrossRefPubMedPubMedCentral Trumm CG, Burgard C, Deger C, Stahl R, Forbrig R, D’Anastasi M. Intermittent quick-check CT fluoroscopy-guided percutaneous drainage placement in patients with infected renal and perirenal fluid collections: 11-year experience. Diagn Interv Radiol. 2021;27(3):378–85.CrossRefPubMedPubMedCentral
8.
go back to reference Wallace H, Martin CJ, Sutton DG, Peet D, Williams JR. Establishment of scatter factors for use in shielding calculations and risk assessment for computed tomography facilities. J Radiol Prot. 2012;32(1):39–50.CrossRefPubMed Wallace H, Martin CJ, Sutton DG, Peet D, Williams JR. Establishment of scatter factors for use in shielding calculations and risk assessment for computed tomography facilities. J Radiol Prot. 2012;32(1):39–50.CrossRefPubMed
9.
go back to reference Teles P, Nikodemová D, Bakhanova E, Becker F, Kneževic Ž, Pereira MF, et al. A review of radiation protection requirements and dose estimation for staff and patients in CT fluoroscopy. Radiat Prot Dosimetry. 2017;174(4):518–34.PubMed Teles P, Nikodemová D, Bakhanova E, Becker F, Kneževic Ž, Pereira MF, et al. A review of radiation protection requirements and dose estimation for staff and patients in CT fluoroscopy. Radiat Prot Dosimetry. 2017;174(4):518–34.PubMed
10.
go back to reference Khalilzadeh O, Baerlocher MO, Shyn PB, Connolly BL, Devane AM, Morris CS, et al. Proposal of a new adverse event classification by the Society of Interventional Radiology Standards of Practice Committee. J Vasc Interv Radiol. 2017;28(10):1432-1437.e1433.CrossRefPubMed Khalilzadeh O, Baerlocher MO, Shyn PB, Connolly BL, Devane AM, Morris CS, et al. Proposal of a new adverse event classification by the Society of Interventional Radiology Standards of Practice Committee. J Vasc Interv Radiol. 2017;28(10):1432-1437.e1433.CrossRefPubMed
11.
go back to reference Chang CY, Huang AJ, Bredella MA, Torriani M, Halpern EF, Rosenthal DI, et al. Percutaneous CT-guided needle biopsies of musculoskeletal tumors: a 5-year analysis of non-diagnostic biopsies. Skeletal Radiol. 2015;44(12):1795–803.CrossRefPubMed Chang CY, Huang AJ, Bredella MA, Torriani M, Halpern EF, Rosenthal DI, et al. Percutaneous CT-guided needle biopsies of musculoskeletal tumors: a 5-year analysis of non-diagnostic biopsies. Skeletal Radiol. 2015;44(12):1795–803.CrossRefPubMed
12.
go back to reference Alfidi RJ, Haaga J, Meaney TF, MacIntyre WJ, Gonzalez L, Tarar R, et al. Computed tomography of the thorax and abdomen; a preliminary report. Radiology. 1975;117(2):257–64.CrossRefPubMed Alfidi RJ, Haaga J, Meaney TF, MacIntyre WJ, Gonzalez L, Tarar R, et al. Computed tomography of the thorax and abdomen; a preliminary report. Radiology. 1975;117(2):257–64.CrossRefPubMed
13.
go back to reference Haaga JR, Alfidi RJ. Precise biopsy localization by computer tomography. Radiology. 1976;118(3):603–7.CrossRefPubMed Haaga JR, Alfidi RJ. Precise biopsy localization by computer tomography. Radiology. 1976;118(3):603–7.CrossRefPubMed
14.
go back to reference Mills MK, Leake RL, Crawford AM, Soltanolkotabi M, Hansford BG. Concepts in musculoskeletal bone and soft tissue biopsy. Semin Musculoskelet Radiol. 2021;25(6):711–24.CrossRefPubMed Mills MK, Leake RL, Crawford AM, Soltanolkotabi M, Hansford BG. Concepts in musculoskeletal bone and soft tissue biopsy. Semin Musculoskelet Radiol. 2021;25(6):711–24.CrossRefPubMed
15.
go back to reference Yang K, Ganguli S, DeLorenzo MC, Zheng H, Li X, Liu B. Procedure-specific CT dose and utilization factors for CT-guided interventional procedures. Radiology. 2018;289(1):150–7.CrossRefPubMed Yang K, Ganguli S, DeLorenzo MC, Zheng H, Li X, Liu B. Procedure-specific CT dose and utilization factors for CT-guided interventional procedures. Radiology. 2018;289(1):150–7.CrossRefPubMed
16.
go back to reference Burgard C, Stahl R, de Figueiredo GN, Dinkel J, Liebig T, Cioni D, et al. Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics (Basel). 2021;11(5):78. Burgard C, Stahl R, de Figueiredo GN, Dinkel J, Liebig T, Cioni D, et al. Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics (Basel). 2021;11(5):78.
17.
go back to reference Fu YF, Li GC, Cao W, Wang T, Shi YB. Computed tomography fluoroscopy-guided versus conventional computed tomography-guided lung biopsy: a systematic review and meta-analysis. J Comput Assist Tomogr. 2020;44(4):571–7.CrossRefPubMed Fu YF, Li GC, Cao W, Wang T, Shi YB. Computed tomography fluoroscopy-guided versus conventional computed tomography-guided lung biopsy: a systematic review and meta-analysis. J Comput Assist Tomogr. 2020;44(4):571–7.CrossRefPubMed
18.
go back to reference Devita R, Chagarlamudi K, Durieux J, Jordan D, Nguyen B, Davidson J, et al. Omission of planning CT reduces patient radiation exposure during CT-guided bone marrow biopsy and aspiration. Tomography. 2021;7(4):747–51.CrossRefPubMedPubMedCentral Devita R, Chagarlamudi K, Durieux J, Jordan D, Nguyen B, Davidson J, et al. Omission of planning CT reduces patient radiation exposure during CT-guided bone marrow biopsy and aspiration. Tomography. 2021;7(4):747–51.CrossRefPubMedPubMedCentral
19.
go back to reference Paik NC. Radiation Dose Reduction in CT Fluoroscopy-guided cervical transforaminal epidural steroid injection by modifying scout and planning steps. Cardiovasc Intervent Radiol. 2016;39(4):591–9.CrossRefPubMed Paik NC. Radiation Dose Reduction in CT Fluoroscopy-guided cervical transforaminal epidural steroid injection by modifying scout and planning steps. Cardiovasc Intervent Radiol. 2016;39(4):591–9.CrossRefPubMed
20.
go back to reference Sundararajan SH, Cox M, Sedora-Roman N, Ranganathan S, Hurst R, Pukenas B. Image-guided percutaneous calvarial biopsy with low-dose CT-fluoroscopy: technique, safety, and utility in 12 patients. Cardiovasc Intervent Radiol. 2022;45(1):134–6.CrossRefPubMed Sundararajan SH, Cox M, Sedora-Roman N, Ranganathan S, Hurst R, Pukenas B. Image-guided percutaneous calvarial biopsy with low-dose CT-fluoroscopy: technique, safety, and utility in 12 patients. Cardiovasc Intervent Radiol. 2022;45(1):134–6.CrossRefPubMed
21.
go back to reference Prosch H, Stadler A, Schilling M, Bürklin S, Eisenhuber E, Schober E, et al. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: accuracy, complications and radiation dose. Eur J Radiol. 2012;81(5):1029–33.CrossRefPubMed Prosch H, Stadler A, Schilling M, Bürklin S, Eisenhuber E, Schober E, et al. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: accuracy, complications and radiation dose. Eur J Radiol. 2012;81(5):1029–33.CrossRefPubMed
22.
go back to reference Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy–guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220(1):161–7.CrossRefPubMed Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy–guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220(1):161–7.CrossRefPubMed
23.
go back to reference Yamao Y, Yamakado K, Takaki H, Yamada T, Kodama H, Nagasawa N, et al. CT-fluoroscopy in chest interventional radiology: sliding scale of imaging parameters based on radiation exposure dose and factors increasing radiation exposure dose. Clin Radiol. 2013;68(2):162–6.CrossRefPubMed Yamao Y, Yamakado K, Takaki H, Yamada T, Kodama H, Nagasawa N, et al. CT-fluoroscopy in chest interventional radiology: sliding scale of imaging parameters based on radiation exposure dose and factors increasing radiation exposure dose. Clin Radiol. 2013;68(2):162–6.CrossRefPubMed
24.
go back to reference Yamao Y, Yamakado K, Takaki H, Yamada T, Murashima S, Uraki J, et al. Optimal scan parameters for CT fluoroscopy in lung interventional radiologic procedures: relationship between radiation dose and image quality. Radiology. 2010;255(1):233–41.CrossRefPubMed Yamao Y, Yamakado K, Takaki H, Yamada T, Murashima S, Uraki J, et al. Optimal scan parameters for CT fluoroscopy in lung interventional radiologic procedures: relationship between radiation dose and image quality. Radiology. 2010;255(1):233–41.CrossRefPubMed
25.
go back to reference Lamba R. Radiation dose optimization for CT-guided interventional procedures in the abdomen and pelvis. J Am Coll Radiol. 2014;11(3):279–84.CrossRefPubMed Lamba R. Radiation dose optimization for CT-guided interventional procedures in the abdomen and pelvis. J Am Coll Radiol. 2014;11(3):279–84.CrossRefPubMed
26.
go back to reference Lustig JP, Aubry S, Vidal C, Pazart L, Moreau-Gaudry A, Bricault I. Body interventional procedures: which is the best method for CT guidance? Eur Radiol. 2020;30(3):1593–600.CrossRefPubMed Lustig JP, Aubry S, Vidal C, Pazart L, Moreau-Gaudry A, Bricault I. Body interventional procedures: which is the best method for CT guidance? Eur Radiol. 2020;30(3):1593–600.CrossRefPubMed
27.
go back to reference Liang T, Du Y, Guo C, Wang Y, Shang J, Yang J, et al. Ultra-low-dose CT-guided lung biopsy in clinic: radiation dose, accuracy, image quality, and complication rate. Acta Radiol. 2021;62(2):198–205.CrossRefPubMed Liang T, Du Y, Guo C, Wang Y, Shang J, Yang J, et al. Ultra-low-dose CT-guided lung biopsy in clinic: radiation dose, accuracy, image quality, and complication rate. Acta Radiol. 2021;62(2):198–205.CrossRefPubMed
28.
go back to reference Kallianos KG, Elicker BM, Henry TS, Ordovas KG, Nguyen J, Naeger DM. Instituting a low-dose CT-guided lung biopsy protocol. Acad Radiol. 2016;23(9):1130–6.CrossRefPubMedPubMedCentral Kallianos KG, Elicker BM, Henry TS, Ordovas KG, Nguyen J, Naeger DM. Instituting a low-dose CT-guided lung biopsy protocol. Acad Radiol. 2016;23(9):1130–6.CrossRefPubMedPubMedCentral
29.
go back to reference Zhao Y, Matsui Y, Hiraki T, Iguchi T, Tomita K, Uka M, et al. Computed tomography fluoroscopy-guided cutting needle biopsy of pulmonary nodules ≤8 mm: a retrospective study including 117 nodules. Eur J Radiol. 2020;125:108903.CrossRefPubMed Zhao Y, Matsui Y, Hiraki T, Iguchi T, Tomita K, Uka M, et al. Computed tomography fluoroscopy-guided cutting needle biopsy of pulmonary nodules ≤8 mm: a retrospective study including 117 nodules. Eur J Radiol. 2020;125:108903.CrossRefPubMed
30.
go back to reference Ren Q, Zhou Y, Yan M, Zheng C, Zhou G, Xia X. Imaging-guided percutaneous transthoracic needle biopsy of nodules in the lung base: fluoroscopy CT versus cone-beam CT. Clin Radiol. 2022;77(5):e394-e399. Ren Q, Zhou Y, Yan M, Zheng C, Zhou G, Xia X. Imaging-guided percutaneous transthoracic needle biopsy of nodules in the lung base: fluoroscopy CT versus cone-beam CT. Clin Radiol. 2022;77(5):e394-e399.
31.
go back to reference Iguchi T, Matsui Y, Tomita K, Uka M, Umakoshi N, Munetomo K, et al. CT fluoroscopy-guided biopsy of pulmonary lesions contacting the interlobar fissure: an analysis of 72 biopsies. Diagn Interv Imaging. 2022;103(6):302-309 Iguchi T, Matsui Y, Tomita K, Uka M, Umakoshi N, Munetomo K, et al. CT fluoroscopy-guided biopsy of pulmonary lesions contacting the interlobar fissure: an analysis of 72 biopsies. Diagn Interv Imaging. 2022;103(6):302-309
32.
go back to reference Iguchi T, Hiraki T, Matsui Y, Fujiwara H, Sakurai J, Masaoka Y, et al. CT fluoroscopy-guided core needle biopsy of anterior mediastinal masses. Diagn Interv Imaging. 2018;99(2):91–7.CrossRefPubMed Iguchi T, Hiraki T, Matsui Y, Fujiwara H, Sakurai J, Masaoka Y, et al. CT fluoroscopy-guided core needle biopsy of anterior mediastinal masses. Diagn Interv Imaging. 2018;99(2):91–7.CrossRefPubMed
33.
go back to reference Brandt MP, Lehnert T, Czilwik T, Borgmann H, Gruber-Rouh T, Thalhammer A, et al. CT-guided nephrostomy-an expedient tool for complex clinical scenarios. Eur J Radiol. 2019;110:142–7.CrossRefPubMed Brandt MP, Lehnert T, Czilwik T, Borgmann H, Gruber-Rouh T, Thalhammer A, et al. CT-guided nephrostomy-an expedient tool for complex clinical scenarios. Eur J Radiol. 2019;110:142–7.CrossRefPubMed
34.
go back to reference Fukushima Y, Nakamura J, Seki Y, Ando M, Miyazaki M, Tsushima Y. Patients’ radiation dose in computed tomography-fluoroscopy-guided percutaneous cryoablation for small renal tumors. Eur J Radiol. 2021;144: 109972.CrossRefPubMed Fukushima Y, Nakamura J, Seki Y, Ando M, Miyazaki M, Tsushima Y. Patients’ radiation dose in computed tomography-fluoroscopy-guided percutaneous cryoablation for small renal tumors. Eur J Radiol. 2021;144: 109972.CrossRefPubMed
35.
go back to reference Fehrenbach U, Thiel R, Bady PD, Auer TA, Kahl A, Geisel D, et al. CT fluoroscopy-guided pancreas transplant biopsies: a retrospective evaluation of predictors of complications and success rates. Transpl Int. 2021;34(5):855–64.CrossRefPubMed Fehrenbach U, Thiel R, Bady PD, Auer TA, Kahl A, Geisel D, et al. CT fluoroscopy-guided pancreas transplant biopsies: a retrospective evaluation of predictors of complications and success rates. Transpl Int. 2021;34(5):855–64.CrossRefPubMed
36.
go back to reference Theilig D, Mayerhofer A, Petschelt D, Elkilany A, Hamm B, Gebauer B, et al. Impact of interventionalist’s experience and gender on radiation dose and procedural time in CT-guided interventions-a retrospective analysis of 4380 cases over 10 years. Eur Radiol. 2021;31(2):569–79.CrossRefPubMed Theilig D, Mayerhofer A, Petschelt D, Elkilany A, Hamm B, Gebauer B, et al. Impact of interventionalist’s experience and gender on radiation dose and procedural time in CT-guided interventions-a retrospective analysis of 4380 cases over 10 years. Eur Radiol. 2021;31(2):569–79.CrossRefPubMed
37.
go back to reference Guberina N, Forsting M, Ringelstein A, Suntharalingam S, Nassenstein K, Theysohn J, et al. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses. Eur Radiol. 2018;28(9):3929–35.CrossRefPubMed Guberina N, Forsting M, Ringelstein A, Suntharalingam S, Nassenstein K, Theysohn J, et al. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses. Eur Radiol. 2018;28(9):3929–35.CrossRefPubMed
38.
go back to reference Leng S, Christner JA, Carlson SK, Jacobsen M, Vrieze TJ, Atwell TD, et al. Radiation dose levels for interventional CT procedures. AJR Am J Roentgenol. 2011;197(1):W97-103.CrossRefPubMed Leng S, Christner JA, Carlson SK, Jacobsen M, Vrieze TJ, Atwell TD, et al. Radiation dose levels for interventional CT procedures. AJR Am J Roentgenol. 2011;197(1):W97-103.CrossRefPubMed
Metadata
Title
Helical CT versus intermittent CT fluoroscopic guidance for musculoskeletal needle biopsies: impact on radiation exposure, procedure time, diagnostic yield, and adverse events
Authors
A. M. Cahalane
S. Habibollahi
S. J. Staffa
K. Yang
F. J. Fintelmann
C. Y. Chang
Publication date
10-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 6/2023
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-022-04226-y

Other articles of this Issue 6/2023

Skeletal Radiology 6/2023 Go to the issue