Skip to main content
Top
Published in: European Radiology 9/2018

01-09-2018 | Computed Tomography

Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses

Authors: Nika Guberina, Michael Forsting, Adrian Ringelstein, Saravanabavaan Suntharalingam, Kai Nassenstein, Jens Theysohn, Axel Wetter

Published in: European Radiology | Issue 9/2018

Login to get access

Abstract

Objectives

To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute.

Materials and methods

1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013–2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103.

Results

Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose indexvol (CTDIvol); dose-length product (DLPbody); size-specific dose estimate (SSDE)] were also compared.

Conclusion

Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices.

Key Points

• Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations.
• These data allow identifying organs at risk of higher radiation dose.
• Detailed knowledge of radiation dose may contribute to a better individual risk-stratification.
• New CT-scanner generations involve markedly lower radiation doses compared to older devices.
Literature
1.
go back to reference Tsai IC, Tsai WL, Chen MC et al (2009) CT-guided core biopsy of lung lesions: a primer. Am J Roentgenol 193:1228–1235CrossRef Tsai IC, Tsai WL, Chen MC et al (2009) CT-guided core biopsy of lung lesions: a primer. Am J Roentgenol 193:1228–1235CrossRef
2.
go back to reference Pao W, Kris MG, Iafrate AJ et al (2009) Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res 15:5317–5322CrossRefPubMed Pao W, Kris MG, Iafrate AJ et al (2009) Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res 15:5317–5322CrossRefPubMed
3.
go back to reference Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data — methods and preliminary results. Radiology. 264:387–396CrossRefPubMedPubMedCentral Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data — methods and preliminary results. Radiology. 264:387–396CrossRefPubMedPubMedCentral
4.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMedPubMedCentral
5.
go back to reference Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505CrossRefPubMedPubMedCentral Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505CrossRefPubMedPubMedCentral
6.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med. 357:2277–2284CrossRefPubMed Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med. 357:2277–2284CrossRefPubMed
7.
go back to reference Leng S, Christner JA, Carlson SK et al (2011) Radiation Dose Levels for Interventional CT Procedures. AJR Am J Roentgenol. 197:W97–W103CrossRefPubMed Leng S, Christner JA, Carlson SK et al (2011) Radiation Dose Levels for Interventional CT Procedures. AJR Am J Roentgenol. 197:W97–W103CrossRefPubMed
8.
go back to reference Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB (2013) Radiation exposure in CT-guided interventions. Eur J Radiol. 82:2253–2257CrossRefPubMed Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB (2013) Radiation exposure in CT-guided interventions. Eur J Radiol. 82:2253–2257CrossRefPubMed
9.
go back to reference McCollough CH, Leng S, Lifeng Y, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316CrossRefPubMedPubMedCentral McCollough CH, Leng S, Lifeng Y, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316CrossRefPubMedPubMedCentral
10.
go back to reference Brink JA, Morin RL (2012) Size-specific dose estimation for CT: how should it be used and what does it mean? Radiology 265:666–668CrossRefPubMed Brink JA, Morin RL (2012) Size-specific dose estimation for CT: how should it be used and what does it mean? Radiology 265:666–668CrossRefPubMed
11.
go back to reference ICRP Publication 103 (2007) Recommendations of the International Commission on Radiological Protection. Annals of the ICRP Vol. 37 (2-4). Elsevier Science, Oxford ICRP Publication 103 (2007) Recommendations of the International Commission on Radiological Protection. Annals of the ICRP Vol. 37 (2-4). Elsevier Science, Oxford
12.
go back to reference Guberina N, Forsting M, Suntharalingam S et al (2017) Radiation dose monitoring in the clinical routine. Rofo 189:356–360PubMed Guberina N, Forsting M, Suntharalingam S et al (2017) Radiation dose monitoring in the clinical routine. Rofo 189:356–360PubMed
13.
14.
go back to reference Guberina N, Suntharalingam S, Naßenstein K et al (2016) Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans. Neuroradiology. 58:955-959. Guberina N, Suntharalingam S, Naßenstein K et al (2016) Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans. Neuroradiology. 58:955-959.
16.
go back to reference Tzedakis A, Damilakis J, Perisinakis K, Karantanas A, Karabekios S, Gourtsoyiannis N (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34:1163–1175CrossRefPubMed Tzedakis A, Damilakis J, Perisinakis K, Karantanas A, Karabekios S, Gourtsoyiannis N (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34:1163–1175CrossRefPubMed
17.
go back to reference Sinclair L, Griglock TM, Mench A (2015) Determining organ doses from ct with direct measurements in postmortem subjects: part 2--correlations with patient-specific parameters. Radiology. 277:471–476CrossRefPubMed Sinclair L, Griglock TM, Mench A (2015) Determining organ doses from ct with direct measurements in postmortem subjects: part 2--correlations with patient-specific parameters. Radiology. 277:471–476CrossRefPubMed
18.
go back to reference Guberina N, Lechel U, Forsting M, Ringelstein A (2016) Efficacy of high-pitch CT protocols for radiation dose reduction. J Radiol Prot 36:N57–N66CrossRefPubMed Guberina N, Lechel U, Forsting M, Ringelstein A (2016) Efficacy of high-pitch CT protocols for radiation dose reduction. J Radiol Prot 36:N57–N66CrossRefPubMed
19.
go back to reference Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236:565–571CrossRefPubMed Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236:565–571CrossRefPubMed
Metadata
Title
Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses
Authors
Nika Guberina
Michael Forsting
Adrian Ringelstein
Saravanabavaan Suntharalingam
Kai Nassenstein
Jens Theysohn
Axel Wetter
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5350-1

Other articles of this Issue 9/2018

European Radiology 9/2018 Go to the issue