Skip to main content
Top
Published in: Pediatric Radiology 4/2023

Open Access 14-11-2022 | Magnetic Resonance Imaging | ESPR

Chest magnetic resonance imaging in cystic fibrosis: technique and clinical benefits

Authors: Daniel Gräfe, Freerk Prenzel, Franz Wolfgang Hirsch

Published in: Pediatric Radiology | Issue 4/2023

Login to get access

Abstract

Cystic fibrosis (CF) is one of the most common inherited and life-shortening pulmonary diseases in the Caucasian population. With the widespread introduction of newborn screening and the development of modulator therapy, tremendous advances have been made in recent years both in diagnosis and therapy. Since paediatric CF patients tend to be younger and have lower morbidity, the type of imaging modality that should be used to monitor the disease is often debated. Computed tomography (CT) is sensitive to many pulmonary pathologies, but radiation exposure limits its use, especially in children and adolescents. Conventional pulmonary magnetic resonance imaging (MRI) is a valid alternative to CT and, in most cases, provides sufficient information to guide treatment. Given the expected widespread availability of sequences with ultra-short echo times, there will be even fewer reasons to perform CT for follow-up of patients with CF. This review aims to provide an overview of the process and results of monitoring CF with MRI, particularly for centres not specialising in the disease.
Literature
1.
go back to reference Scotet V, L’Hostis C, Férec C (2020) The changing epidemiology of cystic fibrosis: Incidence, survival and impact of the CFTRGene discovery. Genes (Basel) 11:589PubMedCrossRef Scotet V, L’Hostis C, Férec C (2020) The changing epidemiology of cystic fibrosis: Incidence, survival and impact of the CFTRGene discovery. Genes (Basel) 11:589PubMedCrossRef
2.
go back to reference Farrell PM (2008) The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 7:450–453PubMedCrossRef Farrell PM (2008) The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 7:450–453PubMedCrossRef
4.
go back to reference Balfour-Lynn IM, King JA (2020) CFTR modulator therapies – Effect on life expectancy in people with cystic fibrosis. Paediatr Respir Rev 42:3–8PubMedPubMedCentral Balfour-Lynn IM, King JA (2020) CFTR modulator therapies – Effect on life expectancy in people with cystic fibrosis. Paediatr Respir Rev 42:3–8PubMedPubMedCentral
5.
go back to reference Southern KW, Mérelle MM, Dankert-Roelse JE, Nagelkerke AD (2009) Newborn screening for cystic fibrosis. Cochrane Database Syst Rev 2009:CD001402PubMedPubMedCentral Southern KW, Mérelle MM, Dankert-Roelse JE, Nagelkerke AD (2009) Newborn screening for cystic fibrosis. Cochrane Database Syst Rev 2009:CD001402PubMedPubMedCentral
6.
go back to reference Ramsey BW, Davies J, McElvaney NG et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672PubMedPubMedCentralCrossRef Ramsey BW, Davies J, McElvaney NG et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672PubMedPubMedCentralCrossRef
7.
go back to reference de Jong PA, Nakano Y, Lequin MH et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97PubMedCrossRef de Jong PA, Nakano Y, Lequin MH et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97PubMedCrossRef
8.
go back to reference Stahl M, Steinke E, Graeber SY et al (2021) Magnetic resonance imaging detects progression of lung disease and impact of newborn screening in preschool children with cystic fibrosis. Am J Respir Crit Care Med 204:943–953PubMedCrossRef Stahl M, Steinke E, Graeber SY et al (2021) Magnetic resonance imaging detects progression of lung disease and impact of newborn screening in preschool children with cystic fibrosis. Am J Respir Crit Care Med 204:943–953PubMedCrossRef
9.
go back to reference Tiddens HAWM (2006) Chest computed tomography scans should be considered as a routine investigation in cystic fibrosis. Paediatr Respir Rev 7:202–208PubMedCrossRef Tiddens HAWM (2006) Chest computed tomography scans should be considered as a routine investigation in cystic fibrosis. Paediatr Respir Rev 7:202–208PubMedCrossRef
10.
go back to reference Stahl M, Wielpütz MO, Graeber SY et al (2016) Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med 195:349–359CrossRef Stahl M, Wielpütz MO, Graeber SY et al (2016) Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med 195:349–359CrossRef
11.
go back to reference Dournes G, Berger P, Refait J et al (2017) Allergic bronchopulmonary aspergillosis in cystic fibrosis: MR imaging of airway mucus contrasts as a tool for diagnosis. Radiology 285:261–269PubMedCrossRef Dournes G, Berger P, Refait J et al (2017) Allergic bronchopulmonary aspergillosis in cystic fibrosis: MR imaging of airway mucus contrasts as a tool for diagnosis. Radiology 285:261–269PubMedCrossRef
12.
go back to reference Schaefer JF, Hector A, Schmidt K et al (2018) A semiquantitative MRI-Score can predict loss of lung function in patients with cystic fibrosis: Preliminary results. Eur Radiol 28:74–84PubMedCrossRef Schaefer JF, Hector A, Schmidt K et al (2018) A semiquantitative MRI-Score can predict loss of lung function in patients with cystic fibrosis: Preliminary results. Eur Radiol 28:74–84PubMedCrossRef
13.
go back to reference Eichinger M, Optazaite DE, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329PubMedCrossRef Eichinger M, Optazaite DE, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329PubMedCrossRef
14.
go back to reference Tepper LA, Ciet P, Caudri D et al (2016) Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 51:34–41PubMedCrossRef Tepper LA, Ciet P, Caudri D et al (2016) Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 51:34–41PubMedCrossRef
15.
go back to reference Helbich TH, Heinz-Peer G, Eichler I et al (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 213:537–544PubMedCrossRef Helbich TH, Heinz-Peer G, Eichler I et al (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 213:537–544PubMedCrossRef
16.
go back to reference Glandorf J, Klimeš F, Voskrebenzev A et al (2020) Comparison of phase-resolved functional lung (PREFUL) MRI derived perfusion and ventilation parameters at 1.5T and 3T in healthy volunteers. PLoS One 15:e0244638PubMedPubMedCentralCrossRef Glandorf J, Klimeš F, Voskrebenzev A et al (2020) Comparison of phase-resolved functional lung (PREFUL) MRI derived perfusion and ventilation parameters at 1.5T and 3T in healthy volunteers. PLoS One 15:e0244638PubMedPubMedCentralCrossRef
17.
go back to reference Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner Society: Glossary of terms for thoracic imaging. Radiology 246:697–722PubMedCrossRef Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner Society: Glossary of terms for thoracic imaging. Radiology 246:697–722PubMedCrossRef
18.
go back to reference Ittrich H, Bockhorn M, Klose H, Simon M (2017) The diagnosis and treatment of hemoptysis. Dtsch Arztebl Int 114:371–381PubMedPubMedCentral Ittrich H, Bockhorn M, Klose H, Simon M (2017) The diagnosis and treatment of hemoptysis. Dtsch Arztebl Int 114:371–381PubMedPubMedCentral
19.
go back to reference Terheggen-Lagro S, Truijens N, Van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445PubMedCrossRef Terheggen-Lagro S, Truijens N, Van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445PubMedCrossRef
20.
go back to reference Chrispin AR, Norman AP (1974) The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol 2:101–105PubMedCrossRef Chrispin AR, Norman AP (1974) The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol 2:101–105PubMedCrossRef
21.
go back to reference Davis SD, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950PubMedCrossRef Davis SD, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950PubMedCrossRef
22.
go back to reference Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138PubMedCrossRef Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138PubMedCrossRef
23.
go back to reference Smyth AR, Bell SC, Bojcin S et al (2014) European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros 13(Suppl 1):S23–S42PubMedCrossRef Smyth AR, Bell SC, Bojcin S et al (2014) European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros 13(Suppl 1):S23–S42PubMedCrossRef
24.
go back to reference Kino A, Zucker EJ, Honkanen A et al (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing vs. breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49:301–307PubMedCrossRef Kino A, Zucker EJ, Honkanen A et al (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing vs. breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49:301–307PubMedCrossRef
25.
go back to reference Joyce S, Carey BW, Moore N et al (2021) Computed tomography in cystic fibrosis lung disease: a focus on radiation exposure. Pediatr Radiol 51:544–553PubMedCrossRef Joyce S, Carey BW, Moore N et al (2021) Computed tomography in cystic fibrosis lung disease: a focus on radiation exposure. Pediatr Radiol 51:544–553PubMedCrossRef
26.
go back to reference Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76:393.e9-393.e17PubMedCrossRef Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76:393.e9-393.e17PubMedCrossRef
27.
go back to reference Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707PubMedPubMedCentralCrossRef Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707PubMedPubMedCentralCrossRef
28.
go back to reference Hirsch FW, Sorge I, Vogel-Claussen J et al (2020) The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol 50:734–749PubMedPubMedCentralCrossRef Hirsch FW, Sorge I, Vogel-Claussen J et al (2020) The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol 50:734–749PubMedPubMedCentralCrossRef
29.
go back to reference Renz DM, Scholz O, Böttcher J et al (2015) Comparison between magnetic resonance imaging and computed tomography of the lung in patients with cystic fibrosis with regard to clinical, laboratory, and pulmonary functional parameters. Investig Radiol 50:733–742CrossRef Renz DM, Scholz O, Böttcher J et al (2015) Comparison between magnetic resonance imaging and computed tomography of the lung in patients with cystic fibrosis with regard to clinical, laboratory, and pulmonary functional parameters. Investig Radiol 50:733–742CrossRef
30.
go back to reference Hatabu H, Ohno Y, Gefter WB et al (2020) Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society Position Paper. Radiology 297:286–301PubMedCrossRef Hatabu H, Ohno Y, Gefter WB et al (2020) Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society Position Paper. Radiology 297:286–301PubMedCrossRef
31.
go back to reference Dournes G, Walkup LL, Benlala I et al (2021) The clinical use of lung MRI in cystic fibrosis. Chest 159:2205–2217PubMedCrossRef Dournes G, Walkup LL, Benlala I et al (2021) The clinical use of lung MRI in cystic fibrosis. Chest 159:2205–2217PubMedCrossRef
32.
go back to reference Woods JC, Wild JM, Wielpütz MO et al (2020) Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging 52:1306–1320PubMedCrossRef Woods JC, Wild JM, Wielpütz MO et al (2020) Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging 52:1306–1320PubMedCrossRef
34.
35.
go back to reference Chassagnon G, Martin C, Ben Hassen W et al (2019) High-resolution lung MRI with ultrashort-TE: 1.5 or 3 Tesla? Magn Reson Imaging 61:97–103PubMedCrossRef Chassagnon G, Martin C, Ben Hassen W et al (2019) High-resolution lung MRI with ultrashort-TE: 1.5 or 3 Tesla? Magn Reson Imaging 61:97–103PubMedCrossRef
36.
go back to reference Dournes G, Menut F, Macey J et al (2016) Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 26:3811–3820PubMedCrossRef Dournes G, Menut F, Macey J et al (2016) Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 26:3811–3820PubMedCrossRef
37.
go back to reference Wielpütz M, Kauczor H-U (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18:344–353PubMed Wielpütz M, Kauczor H-U (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18:344–353PubMed
38.
go back to reference Wielpütz MO, Triphan SMF, Ohno Y et al (2019) Outracing lung signal decay – potential of ultrashort echo time MRI. RöFo 191:415–423PubMed Wielpütz MO, Triphan SMF, Ohno Y et al (2019) Outracing lung signal decay – potential of ultrashort echo time MRI. RöFo 191:415–423PubMed
39.
go back to reference Cieszanowski A, Lisowska A, Dabrowska M et al (2016) MR imaging of pulmonary nodules: detection rate and accuracy of size estimation in comparison to computed tomography. PLoS ONE 11:e0156272PubMedPubMedCentralCrossRef Cieszanowski A, Lisowska A, Dabrowska M et al (2016) MR imaging of pulmonary nodules: detection rate and accuracy of size estimation in comparison to computed tomography. PLoS ONE 11:e0156272PubMedPubMedCentralCrossRef
40.
41.
go back to reference Morita S, Ueno E, Suzuki K, Machida H, Fujimura M, Kojima S, Hirata M, Ohnishi T, Imura C (2008) Navigator-triggered prospective acquisition correction (PACE) technique vs. conventional respiratory-triggered technique for free-breathing 3D MRCP: an initial prospective comparative study using healthy volunteers. J Magn Reson Imaging 28:673–677PubMedCrossRef Morita S, Ueno E, Suzuki K, Machida H, Fujimura M, Kojima S, Hirata M, Ohnishi T, Imura C (2008) Navigator-triggered prospective acquisition correction (PACE) technique vs. conventional respiratory-triggered technique for free-breathing 3D MRCP: an initial prospective comparative study using healthy volunteers. J Magn Reson Imaging 28:673–677PubMedCrossRef
42.
go back to reference Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, Peters DC (2011) Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med 65:1097–1102PubMedCrossRef Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, Peters DC (2011) Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med 65:1097–1102PubMedCrossRef
43.
go back to reference Ciet P, Serra G, Andrinopoulou ER et al (2016) Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging. Eur Radiol 26:3830–3839PubMedCrossRef Ciet P, Serra G, Andrinopoulou ER et al (2016) Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging. Eur Radiol 26:3830–3839PubMedCrossRef
44.
go back to reference Gräfe D, Anders R, Prenzel F et al (2021) Pediatric MR lung imaging with 3D ultrashort-TE in free breathing: are we past the conventional T2 sequence? Pediatr Pulmonol 56:3899–3907PubMedCrossRef Gräfe D, Anders R, Prenzel F et al (2021) Pediatric MR lung imaging with 3D ultrashort-TE in free breathing: are we past the conventional T2 sequence? Pediatr Pulmonol 56:3899–3907PubMedCrossRef
45.
go back to reference Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965PubMedCrossRef Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965PubMedCrossRef
46.
go back to reference Monroe EJ, Pierce DB, Ingraham CR et al (2018) An interventionalist’s guide to hemoptysis in cystic fibrosis. Radiographics 38:624–641PubMedCrossRef Monroe EJ, Pierce DB, Ingraham CR et al (2018) An interventionalist’s guide to hemoptysis in cystic fibrosis. Radiographics 38:624–641PubMedCrossRef
47.
go back to reference Blumfield E, Swenson DW, Iyer RS, Stanescu AL (2019) Gadolinium-based contrast agents — review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457PubMedCrossRef Blumfield E, Swenson DW, Iyer RS, Stanescu AL (2019) Gadolinium-based contrast agents — review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457PubMedCrossRef
48.
go back to reference Donnola SB, Dasenbrook EC, Weaver D et al (2017) Preliminary comparison of normalized T1 and non-contrast perfusion MRI assessments of regional lung disease in cystic fibrosis patients. J Cyst Fibros 16:283–290PubMedCrossRef Donnola SB, Dasenbrook EC, Weaver D et al (2017) Preliminary comparison of normalized T1 and non-contrast perfusion MRI assessments of regional lung disease in cystic fibrosis patients. J Cyst Fibros 16:283–290PubMedCrossRef
49.
go back to reference Fischer A, Weick S, Ritter CO et al (2014) SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI. NMR Biomed 27:907–917PubMedCrossRef Fischer A, Weick S, Ritter CO et al (2014) SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI. NMR Biomed 27:907–917PubMedCrossRef
50.
go back to reference Behrendt L, Smith LJ, Voskrebenzev A et al (2022) A dual center and dual vendor comparison study of automated perfusion-weighted phase-resolved functional lung magnetic resonance imaging with dynamic contrast-enhanced magnetic resonance imaging in patients with cystic fibrosis. Pulm Circ 12:e12054PubMedPubMedCentralCrossRef Behrendt L, Smith LJ, Voskrebenzev A et al (2022) A dual center and dual vendor comparison study of automated perfusion-weighted phase-resolved functional lung magnetic resonance imaging with dynamic contrast-enhanced magnetic resonance imaging in patients with cystic fibrosis. Pulm Circ 12:e12054PubMedPubMedCentralCrossRef
51.
go back to reference Thomen RP, Walkup LL, Roach DJ et al (2017) Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 16:275–282PubMedCrossRef Thomen RP, Walkup LL, Roach DJ et al (2017) Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 16:275–282PubMedCrossRef
52.
go back to reference Bannier E, Cieslar K, Mosbah K et al (2010) Hyperpolarized 3 He MR for sensitive imaging of ventilation function and treatment efficiency in young cystic fibrosis patients with normal lung function. Radiology 255:225–232PubMedCrossRef Bannier E, Cieslar K, Mosbah K et al (2010) Hyperpolarized 3 He MR for sensitive imaging of ventilation function and treatment efficiency in young cystic fibrosis patients with normal lung function. Radiology 255:225–232PubMedCrossRef
53.
go back to reference Roos JE, McAdams HP, Kaushik SS, Driehuys B (2015) Hyperpolarized gas MR imaging: technique and applications. Magn Reson Imaging Clin N Am 23:217–229PubMedPubMedCentralCrossRef Roos JE, McAdams HP, Kaushik SS, Driehuys B (2015) Hyperpolarized gas MR imaging: technique and applications. Magn Reson Imaging Clin N Am 23:217–229PubMedPubMedCentralCrossRef
54.
go back to reference Couch MJ, Munidasa S, Rayment JH et al (2021) Comparison of functional free-breathing pulmonary 1H and hyperpolarized 129Xe magnetic resonance imaging in pediatric cystic fibrosis. Acad Radiol 28:e209–e218PubMedCrossRef Couch MJ, Munidasa S, Rayment JH et al (2021) Comparison of functional free-breathing pulmonary 1H and hyperpolarized 129Xe magnetic resonance imaging in pediatric cystic fibrosis. Acad Radiol 28:e209–e218PubMedCrossRef
55.
go back to reference Bauman G, Puderbach M, Heimann T et al (2013) Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377PubMedCrossRef Bauman G, Puderbach M, Heimann T et al (2013) Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377PubMedCrossRef
56.
go back to reference Behrendt L, Voskrebenzev A, Klimeš F et al (2020) Validation of automated perfusion-weighted phase-resolved functional lung (PREFUL)-MRI in patients with pulmonary diseases. J Magn Reson Imaging 52:103–114PubMedCrossRef Behrendt L, Voskrebenzev A, Klimeš F et al (2020) Validation of automated perfusion-weighted phase-resolved functional lung (PREFUL)-MRI in patients with pulmonary diseases. J Magn Reson Imaging 52:103–114PubMedCrossRef
57.
go back to reference Neemuchwala F, Ghadimi Mahani M, Pang Y et al (2020) Lung T1 mapping magnetic resonance imaging in the assessment of pulmonary disease in children with cystic fibrosis: a pilot study. Pediatr Radiol 50:923–934PubMedCrossRef Neemuchwala F, Ghadimi Mahani M, Pang Y et al (2020) Lung T1 mapping magnetic resonance imaging in the assessment of pulmonary disease in children with cystic fibrosis: a pilot study. Pediatr Radiol 50:923–934PubMedCrossRef
58.
go back to reference Puderbach M, Eichinger M, Haeselbarth J et al (2007) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients. Investig Radiol 42:715–724CrossRef Puderbach M, Eichinger M, Haeselbarth J et al (2007) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients. Investig Radiol 42:715–724CrossRef
59.
go back to reference Benlala I, Hocke F, Macey J et al (2020) Quantification of MRI T2-weighted high signal volume in cystic fibrosis: a pilot study. Radiology 294:186–196PubMedCrossRef Benlala I, Hocke F, Macey J et al (2020) Quantification of MRI T2-weighted high signal volume in cystic fibrosis: a pilot study. Radiology 294:186–196PubMedCrossRef
60.
go back to reference Calder AD, Bush A, Brody AS, Owens CM (2014) Scoring of chest CT in children with cystic fibrosis: state of the art. Pediatr Radiol 44:1496–1506PubMedCrossRef Calder AD, Bush A, Brody AS, Owens CM (2014) Scoring of chest CT in children with cystic fibrosis: state of the art. Pediatr Radiol 44:1496–1506PubMedCrossRef
61.
go back to reference Leutz-Schmidt P, Stahl M, Sommerburg O et al (2018) Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur J Radiol 101:178–183PubMedCrossRef Leutz-Schmidt P, Stahl M, Sommerburg O et al (2018) Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur J Radiol 101:178–183PubMedCrossRef
62.
go back to reference Konietzke P, Weinheimer O, Wielpütz MO et al (2018) Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8–14 year-old children with cystic fibrosis. PLoS ONE 13:e0194557PubMedPubMedCentralCrossRef Konietzke P, Weinheimer O, Wielpütz MO et al (2018) Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8–14 year-old children with cystic fibrosis. PLoS ONE 13:e0194557PubMedPubMedCentralCrossRef
63.
go back to reference Chassagnon G, Martin C, Burgel PR et al (2018) An automated computed tomography score for the cystic fibrosis lung. Eur Radiol 28:5111–5120PubMedCrossRef Chassagnon G, Martin C, Burgel PR et al (2018) An automated computed tomography score for the cystic fibrosis lung. Eur Radiol 28:5111–5120PubMedCrossRef
64.
go back to reference Benlala I, Point S, Leung C et al (2020) Volumetric quantification of lung MR signal intensities using ultrashort TE as an automated score in cystic fibrosis. Eur Radiol 30:5479–5488PubMedCrossRef Benlala I, Point S, Leung C et al (2020) Volumetric quantification of lung MR signal intensities using ultrashort TE as an automated score in cystic fibrosis. Eur Radiol 30:5479–5488PubMedCrossRef
65.
go back to reference Ciet P, Bertolo S, Ros M et al (2022) State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the “iMAging managEment of cySTic fibROsis” (MAESTRO) consortium. Eur Respir Rev 31:210173PubMedPubMedCentralCrossRef Ciet P, Bertolo S, Ros M et al (2022) State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the “iMAging managEment of cySTic fibROsis” (MAESTRO) consortium. Eur Respir Rev 31:210173PubMedPubMedCentralCrossRef
Metadata
Title
Chest magnetic resonance imaging in cystic fibrosis: technique and clinical benefits
Authors
Daniel Gräfe
Freerk Prenzel
Franz Wolfgang Hirsch
Publication date
14-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 4/2023
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-022-05539-9

Other articles of this Issue 4/2023

Pediatric Radiology 4/2023 Go to the issue