Skip to main content
Top
Published in: Pediatric Radiology 4/2023

Open Access 29-10-2022 | Computed Tomography | ESPR

Chest radiography and computed tomography imaging in cystic fibrosis: current challenges and new perspectives

Authors: Pierluigi Ciet, Ronald Booij, Marcel Dijkshoorn, Marcel van Straten, Harm A. W. M. Tiddens

Published in: Pediatric Radiology | Issue 4/2023

Login to get access

Abstract

Imaging plays a pivotal role in the noninvasive assessment of cystic fibrosis (CF)-related lung damage, which remains the main cause of morbidity and mortality in children with CF. The development of new imaging techniques has significantly changed clinical practice, and advances in therapies have posed diagnostic and monitoring challenges. The authors summarise these challenges and offer new perspectives in the use of imaging for children with CF for both clinicians and radiologists. This article focuses on chest radiography and CT, which are the two main radiologic techniques used in most cystic fibrosis centres. Advantages and disadvantages of radiography and CT for imaging in CF are described, with attention to new developments in these techniques, such as the use of artificial intelligence (AI) image analysis strategies to improve the sensitivity of radiography and CT and the introduction of the photon-counting detector CT scanner to increase spatial resolution at no dose expense.
Literature
1.
go back to reference Bell SC, Mall MA, Gutierrez H et al (2020) The future of cystic fibrosis care: a global perspective. Lancet Respir Med 8:65–124CrossRefPubMed Bell SC, Mall MA, Gutierrez H et al (2020) The future of cystic fibrosis care: a global perspective. Lancet Respir Med 8:65–124CrossRefPubMed
2.
4.
go back to reference Wagener JS, Elkin EP, Pasta DJ et al (2015) Pulmonary function outcomes for assessing cystic fibrosis care. J Cyst Fibros 14:376–383CrossRefPubMed Wagener JS, Elkin EP, Pasta DJ et al (2015) Pulmonary function outcomes for assessing cystic fibrosis care. J Cyst Fibros 14:376–383CrossRefPubMed
5.
6.
go back to reference Nissenbaum C, Davies G, Horsley A, Davies JC (2020) Monitoring early stage lung disease in cystic fibrosis. Curr Opin Pulm Med 26:671–678CrossRefPubMed Nissenbaum C, Davies G, Horsley A, Davies JC (2020) Monitoring early stage lung disease in cystic fibrosis. Curr Opin Pulm Med 26:671–678CrossRefPubMed
7.
go back to reference Newbegin K, Pilkington K, Shanthikumar S, Ranganathan S (2018) Clinical utility of surveillance computed tomography scans in infants with cystic fibrosis. Pediatr Pulmonol 53:1387–1390CrossRefPubMed Newbegin K, Pilkington K, Shanthikumar S, Ranganathan S (2018) Clinical utility of surveillance computed tomography scans in infants with cystic fibrosis. Pediatr Pulmonol 53:1387–1390CrossRefPubMed
8.
go back to reference Szczesniak R, Turkovic L, Andrinopoulou E-RR, Tiddens HAWM (2017) Chest imaging in cystic fibrosis studies: what counts, and can be counted? J Cyst Fibros 16:175–185CrossRefPubMed Szczesniak R, Turkovic L, Andrinopoulou E-RR, Tiddens HAWM (2017) Chest imaging in cystic fibrosis studies: what counts, and can be counted? J Cyst Fibros 16:175–185CrossRefPubMed
9.
go back to reference Bayfield KJ, Douglas TA, Rosenow T et al (2021) Time to get serious about the detection and monitoring of early lung disease in cystic fibrosis. Thorax 76:1255–1265CrossRefPubMed Bayfield KJ, Douglas TA, Rosenow T et al (2021) Time to get serious about the detection and monitoring of early lung disease in cystic fibrosis. Thorax 76:1255–1265CrossRefPubMed
10.
go back to reference Tiddens HAWM, Rosenow T (2014) What did we learn from two decades of chest computed tomography in cystic fibrosis? Pediatr Radiol 44:1490–1495CrossRefPubMed Tiddens HAWM, Rosenow T (2014) What did we learn from two decades of chest computed tomography in cystic fibrosis? Pediatr Radiol 44:1490–1495CrossRefPubMed
11.
go back to reference Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965CrossRefPubMed Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965CrossRefPubMed
12.
go back to reference Ciet P, Bertolo S, Ros M et al (2022) State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the “iMAging managEment of cySTic fibROsis” (MAESTRO) consortium. Eur Respir Rev 31:210173CrossRefPubMedPubMedCentral Ciet P, Bertolo S, Ros M et al (2022) State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the “iMAging managEment of cySTic fibROsis” (MAESTRO) consortium. Eur Respir Rev 31:210173CrossRefPubMedPubMedCentral
14.
go back to reference Crowley C, Connor OJO, Ciet P et al (2021) The evolving role of radiological imaging in cystic fibrosis. Curr Opin Pulm Med 27:575–585CrossRefPubMed Crowley C, Connor OJO, Ciet P et al (2021) The evolving role of radiological imaging in cystic fibrosis. Curr Opin Pulm Med 27:575–585CrossRefPubMed
15.
go back to reference Bortoluzzi CF, Pontello E, Pintani E et al (2020) The impact of chest computed tomography and chest radiography on clinical management of cystic fibrosis lung disease. J Cyst Fibros 19:641–646CrossRefPubMed Bortoluzzi CF, Pontello E, Pintani E et al (2020) The impact of chest computed tomography and chest radiography on clinical management of cystic fibrosis lung disease. J Cyst Fibros 19:641–646CrossRefPubMed
17.
go back to reference Rosenfeld M, Emerson J, Williams-Warren J et al (2001) Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr 139:359–365CrossRefPubMed Rosenfeld M, Emerson J, Williams-Warren J et al (2001) Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr 139:359–365CrossRefPubMed
18.
go back to reference Kuo W, Kemner-van de Corput MPC, Perez-Rovira A et al (2016) Multicentre chest computed tomography standardisation in children and adolescents with cystic fibrosis: the way forward. Eur Respir J 47:1706–1717CrossRefPubMed Kuo W, Kemner-van de Corput MPC, Perez-Rovira A et al (2016) Multicentre chest computed tomography standardisation in children and adolescents with cystic fibrosis: the way forward. Eur Respir J 47:1706–1717CrossRefPubMed
19.
go back to reference Gilchrist FJ, Buka R, Jones M et al (2018) Clinical indications and scanning protocols for chest CT in children with cystic fibrosis: a survey of UK tertiary centres. BMJ Paediatr Open 2:e000367CrossRefPubMedPubMedCentral Gilchrist FJ, Buka R, Jones M et al (2018) Clinical indications and scanning protocols for chest CT in children with cystic fibrosis: a survey of UK tertiary centres. BMJ Paediatr Open 2:e000367CrossRefPubMedPubMedCentral
20.
go back to reference Kino A, Zucker EJ, Honkanen A et al (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing vs. breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49:301–307CrossRefPubMed Kino A, Zucker EJ, Honkanen A et al (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing vs. breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49:301–307CrossRefPubMed
21.
go back to reference Oudraad MCJ, Kuo W, Rosenow T et al (2020) Assessment of early lung disease in young children with CF: a comparison between pressure-controlled and free-breathing chest computed tomography. Pediatr Pulmonol 55:1161–1168CrossRefPubMedPubMedCentral Oudraad MCJ, Kuo W, Rosenow T et al (2020) Assessment of early lung disease in young children with CF: a comparison between pressure-controlled and free-breathing chest computed tomography. Pediatr Pulmonol 55:1161–1168CrossRefPubMedPubMedCentral
22.
go back to reference Salamon ER, Lever S, Kuo W et al (2017) Spirometer guided chest imaging in children: it is worth the effort! Pediatr Pulmonol 52:48–56CrossRefPubMed Salamon ER, Lever S, Kuo W et al (2017) Spirometer guided chest imaging in children: it is worth the effort! Pediatr Pulmonol 52:48–56CrossRefPubMed
23.
go back to reference Turkovic L, Caudri D, Rosenow T et al (2020) Structural determinants of long-term functional outcomes in young children with cystic fibrosis. Eur Respir J 55:1900748CrossRefPubMed Turkovic L, Caudri D, Rosenow T et al (2020) Structural determinants of long-term functional outcomes in young children with cystic fibrosis. Eur Respir J 55:1900748CrossRefPubMed
25.
go back to reference de Jong PA, Achterberg JA, Kessels OAM et al (2011) Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function. Eur Radiol 21:722–729CrossRefPubMed de Jong PA, Achterberg JA, Kessels OAM et al (2011) Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function. Eur Radiol 21:722–729CrossRefPubMed
26.
go back to reference Terheggen-Lagro S, Truijens N, van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445CrossRefPubMed Terheggen-Lagro S, Truijens N, van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445CrossRefPubMed
27.
go back to reference Greene KE, Takasugi JE, Godwin JD et al (1994) Radiographic changes in acute exacerbations of cystic fibrosis in adults: a pilot study. AJR Am J Roentgenol 163:557–562CrossRefPubMed Greene KE, Takasugi JE, Godwin JD et al (1994) Radiographic changes in acute exacerbations of cystic fibrosis in adults: a pilot study. AJR Am J Roentgenol 163:557–562CrossRefPubMed
28.
go back to reference Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138CrossRefPubMed Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138CrossRefPubMed
29.
go back to reference Kanal KM, Butler PF, Chatfield MB et al (2022) U.S. diagnostic reference levels and achievable doses for 10 pediatric CT examinations. Radiology 302:164–174CrossRefPubMed Kanal KM, Butler PF, Chatfield MB et al (2022) U.S. diagnostic reference levels and achievable doses for 10 pediatric CT examinations. Radiology 302:164–174CrossRefPubMed
30.
go back to reference Don S, Macdougall R, Strauss K et al (2013) Image Gently campaign back to basics initiative: ten steps to help manage radiation dose in pediatric digital radiography. AJR Am J Roentgenol 200:W431–W436CrossRefPubMed Don S, Macdougall R, Strauss K et al (2013) Image Gently campaign back to basics initiative: ten steps to help manage radiation dose in pediatric digital radiography. AJR Am J Roentgenol 200:W431–W436CrossRefPubMed
31.
go back to reference Conway S, Balfour-Lynn IM, De Rijcke K et al (2014) European Cystic Fibrosis Society standards of care: framework for the Cystic Fibrosis centre. J Cyst Fibros 13:S3–S22CrossRefPubMedPubMedCentral Conway S, Balfour-Lynn IM, De Rijcke K et al (2014) European Cystic Fibrosis Society standards of care: framework for the Cystic Fibrosis centre. J Cyst Fibros 13:S3–S22CrossRefPubMedPubMedCentral
32.
go back to reference Kuo W, Ciet P, Tiddens HAWM et al (2014) Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med 189:1328–1336CrossRefPubMed Kuo W, Ciet P, Tiddens HAWM et al (2014) Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med 189:1328–1336CrossRefPubMed
33.
go back to reference Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76:393.e9–393.e17CrossRefPubMed Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76:393.e9–393.e17CrossRefPubMed
34.
go back to reference Sheahan KP, Glynn D, Joyce S et al (2021) Best practices: imaging strategies for reduced-dose chest CT in the management of cystic fibrosis–related lung disease. AJR Am J Roentgenol 217:304–313CrossRefPubMed Sheahan KP, Glynn D, Joyce S et al (2021) Best practices: imaging strategies for reduced-dose chest CT in the management of cystic fibrosis–related lung disease. AJR Am J Roentgenol 217:304–313CrossRefPubMed
35.
go back to reference Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose–length product. Radiology 257:158–166CrossRefPubMed Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose–length product. Radiology 257:158–166CrossRefPubMed
36.
go back to reference Ronan NJ, Einarsson GG, Twomey M et al (2018) CORK study in cystic fibrosis: sustained improvements in ultra-low-dose chest CT scores after CFTR modulation with ivacaftor. Chest 153:395–403CrossRefPubMed Ronan NJ, Einarsson GG, Twomey M et al (2018) CORK study in cystic fibrosis: sustained improvements in ultra-low-dose chest CT scores after CFTR modulation with ivacaftor. Chest 153:395–403CrossRefPubMed
37.
go back to reference Willemink MJ, Persson M, Pourmorteza A et al (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289:293–312CrossRefPubMed Willemink MJ, Persson M, Pourmorteza A et al (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289:293–312CrossRefPubMed
38.
go back to reference Dournes G, Hall CS, Willmering MM et al (2021) Artificial intelligence in CT for quantifying lung changes in the era of CFTR modulators. Eur Respir J 59:2100844CrossRef Dournes G, Hall CS, Willmering MM et al (2021) Artificial intelligence in CT for quantifying lung changes in the era of CFTR modulators. Eur Respir J 59:2100844CrossRef
42.
go back to reference Tiddens HAWM, Andrinopoulou E-R, McIntosh J et al (2020) Chest computed tomography outcomes in a randomized clinical trial in cystic fibrosis: lessons learned from the first ataluren phase 3 study. PLoS One 15:e0240898CrossRefPubMedPubMedCentral Tiddens HAWM, Andrinopoulou E-R, McIntosh J et al (2020) Chest computed tomography outcomes in a randomized clinical trial in cystic fibrosis: lessons learned from the first ataluren phase 3 study. PLoS One 15:e0240898CrossRefPubMedPubMedCentral
Metadata
Title
Chest radiography and computed tomography imaging in cystic fibrosis: current challenges and new perspectives
Authors
Pierluigi Ciet
Ronald Booij
Marcel Dijkshoorn
Marcel van Straten
Harm A. W. M. Tiddens
Publication date
29-10-2022
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 4/2023
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-022-05522-4

Other articles of this Issue 4/2023

Pediatric Radiology 4/2023 Go to the issue