Skip to main content
Top
Published in: Pediatric Radiology 11/2022

Open Access 01-09-2021 | Tuberculosis | Artificial intelligence in pediatric radiology

Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective

Authors: Steven Schalekamp, Willemijn M. Klein, Kicky G. van Leeuwen

Published in: Pediatric Radiology | Issue 11/2022

Login to get access

Abstract

Artificial intelligence (AI) applications for chest radiography and chest CT are among the most developed applications in radiology. More than 40 certified AI products are available for chest radiography or chest CT. These AI products cover a wide range of abnormalities, including pneumonia, pneumothorax and lung cancer. Most applications are aimed at detecting disease, complemented by products that characterize or quantify tissue. At present, none of the thoracic AI products is specifically designed for the pediatric population. However, some products developed to detect tuberculosis in adults are also applicable to children. Software is under development to detect early changes of cystic fibrosis on chest CT, which could be an interesting application for pediatric radiology. In this review, we give an overview of current AI products in thoracic radiology and cover recent literature about AI in chest radiography, with a focus on pediatric radiology. We also discuss possible pediatric applications.
Literature
1.
go back to reference Hart A, Lee EY (2019) Pediatric chest disorders: practical imaging approach to diagnosis. In: Hodler J, Kubik-Huch RA, von Schulthess GK (eds) Diseases of the chest, breast, heart and vessels 2019–2022: diagnostic and interventional imaging. Springer, Cham, pp 107–125CrossRef Hart A, Lee EY (2019) Pediatric chest disorders: practical imaging approach to diagnosis. In: Hodler J, Kubik-Huch RA, von Schulthess GK (eds) Diseases of the chest, breast, heart and vessels 2019–2022: diagnostic and interventional imaging. Springer, Cham, pp 107–125CrossRef
3.
go back to reference van Leeuwen KG, Schalekamp S, Rutten MJCM et al (2021) Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 31:3797–3804PubMedPubMedCentralCrossRef van Leeuwen KG, Schalekamp S, Rutten MJCM et al (2021) Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 31:3797–3804PubMedPubMedCentralCrossRef
4.
go back to reference Nam JG, Park S, Hwang EJ et al (2019) Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 290:218–228PubMedCrossRef Nam JG, Park S, Hwang EJ et al (2019) Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 290:218–228PubMedCrossRef
5.
go back to reference Hwang EJ, Park S, Jin KN et al (2019) Development and validation of a deep learning-based automatic detection algorithm for active pulmonary tuberculosis on chest radiographs. Clin Infect Dis 69:739–747PubMedCrossRef Hwang EJ, Park S, Jin KN et al (2019) Development and validation of a deep learning-based automatic detection algorithm for active pulmonary tuberculosis on chest radiographs. Clin Infect Dis 69:739–747PubMedCrossRef
6.
go back to reference Hwang EJ, Park S, Jin K-N et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2:e191095PubMedPubMedCentralCrossRef Hwang EJ, Park S, Jin K-N et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2:e191095PubMedPubMedCentralCrossRef
7.
go back to reference Liang CH, Liu YC, Wu MT et al (2020) Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice. Clin Radiol 75:38–45PubMedCrossRef Liang CH, Liu YC, Wu MT et al (2020) Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice. Clin Radiol 75:38–45PubMedCrossRef
8.
9.
go back to reference Mushtaq J, Pennella R, Lavalle S et al (2021) Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients. Eur Radiol 31:1770–1779PubMedCrossRef Mushtaq J, Pennella R, Lavalle S et al (2021) Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients. Eur Radiol 31:1770–1779PubMedCrossRef
10.
go back to reference Qin ZZ, Sander MS, Rai B et al (2019) Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep 9:15000PubMedPubMedCentralCrossRef Qin ZZ, Sander MS, Rai B et al (2019) Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep 9:15000PubMedPubMedCentralCrossRef
11.
12.
go back to reference Schalekamp S, Karssemeijer N, Cats AM et al (2016) The effect of supplementary bone-suppressed chest radiographs on the assessment of a variety of common pulmonary abnormalities: results of an observer study. J Thorac Imaging 31:119–125PubMedCrossRef Schalekamp S, Karssemeijer N, Cats AM et al (2016) The effect of supplementary bone-suppressed chest radiographs on the assessment of a variety of common pulmonary abnormalities: results of an observer study. J Thorac Imaging 31:119–125PubMedCrossRef
13.
go back to reference Schalekamp S, van Ginneken B, Meiss L et al (2013) Bone suppressed images improve radiologists' detection performance for pulmonary nodules in chest radiographs. Eur J Radiol 82:2399–2405PubMedCrossRef Schalekamp S, van Ginneken B, Meiss L et al (2013) Bone suppressed images improve radiologists' detection performance for pulmonary nodules in chest radiographs. Eur J Radiol 82:2399–2405PubMedCrossRef
14.
go back to reference Kligerman S, Cai L, White CS (2013) The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph. J Thorac Imaging 28:244–252PubMedCrossRef Kligerman S, Cai L, White CS (2013) The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph. J Thorac Imaging 28:244–252PubMedCrossRef
15.
go back to reference Schalekamp S, van Ginneken B, Koedam E et al (2014) Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology 272:252–261PubMedCrossRef Schalekamp S, van Ginneken B, Koedam E et al (2014) Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology 272:252–261PubMedCrossRef
16.
go back to reference Sim Y, Chung MJ, Kotter E et al (2020) Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 294:199–209PubMedCrossRef Sim Y, Chung MJ, Kotter E et al (2020) Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 294:199–209PubMedCrossRef
17.
go back to reference Murphy K, Habib SS, Zaidi SMA et al (2020) Computer aided detection of tuberculosis on chest radiographs: an evaluation of the CAD4TB v6 system. Sci Rep 10:5492PubMedPubMedCentralCrossRef Murphy K, Habib SS, Zaidi SMA et al (2020) Computer aided detection of tuberculosis on chest radiographs: an evaluation of the CAD4TB v6 system. Sci Rep 10:5492PubMedPubMedCentralCrossRef
18.
go back to reference Murphy K, Smits H, Knoops AJG et al (2020) COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system. Radiology 296:E166–E172PubMedCrossRef Murphy K, Smits H, Knoops AJG et al (2020) COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system. Radiology 296:E166–E172PubMedCrossRef
19.
go back to reference Park S, Lee SM, Lee KH et al (2020) Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings. Eur Radiol 30:1359–1368PubMedCrossRef Park S, Lee SM, Lee KH et al (2020) Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings. Eur Radiol 30:1359–1368PubMedCrossRef
20.
go back to reference Boes JL, Hoff BA, Bule M et al (2015) Parametric response mapping monitors temporal changes on lung CT scans in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS). Acad Radiol 22:186–194PubMedCrossRef Boes JL, Hoff BA, Bule M et al (2015) Parametric response mapping monitors temporal changes on lung CT scans in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS). Acad Radiol 22:186–194PubMedCrossRef
21.
go back to reference Labaki WW, Gu T, Murray S et al (2019) Voxel-wise longitudinal parametric response mapping analysis of chest computed tomography in smokers. Acad Radiol 26:217–223PubMedCrossRef Labaki WW, Gu T, Murray S et al (2019) Voxel-wise longitudinal parametric response mapping analysis of chest computed tomography in smokers. Acad Radiol 26:217–223PubMedCrossRef
22.
go back to reference Occhipinti M, Bosello S, Sisti LG et al (2019) Quantitative and semi-quantitative computed tomography analysis of interstitial lung disease associated with systemic sclerosis: a longitudinal evaluation of pulmonary parenchyma and vessels. PLoS One 14:e0213444PubMedPubMedCentralCrossRef Occhipinti M, Bosello S, Sisti LG et al (2019) Quantitative and semi-quantitative computed tomography analysis of interstitial lung disease associated with systemic sclerosis: a longitudinal evaluation of pulmonary parenchyma and vessels. PLoS One 14:e0213444PubMedPubMedCentralCrossRef
23.
go back to reference Romei C, Tavanti LM, Taliani A et al (2020) Automated computed tomography analysis in the assessment of idiopathic pulmonary fibrosis severity and progression. Eur J Radiol 124:108852PubMedCrossRef Romei C, Tavanti LM, Taliani A et al (2020) Automated computed tomography analysis in the assessment of idiopathic pulmonary fibrosis severity and progression. Eur J Radiol 124:108852PubMedCrossRef
24.
go back to reference Jacobs C, van Rikxoort EM, Murphy K et al (2016) Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol 26:2139–2147PubMedCrossRef Jacobs C, van Rikxoort EM, Murphy K et al (2016) Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol 26:2139–2147PubMedCrossRef
25.
go back to reference Scholten ET, Jacobs C, van Ginneken B et al (2015) Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation. Eur Radiol 25:488–496PubMedCrossRef Scholten ET, Jacobs C, van Ginneken B et al (2015) Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation. Eur Radiol 25:488–496PubMedCrossRef
26.
go back to reference Setio AAA, Traverso A, de Bel T et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13PubMedCrossRef Setio AAA, Traverso A, de Bel T et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13PubMedCrossRef
27.
go back to reference Lo SB, Freedman MT, Gillis LB et al (2018) Journal club: computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function. AJR Am J Roentgenol 210:480–488PubMedCrossRef Lo SB, Freedman MT, Gillis LB et al (2018) Journal club: computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function. AJR Am J Roentgenol 210:480–488PubMedCrossRef
28.
go back to reference Wagner A-K, Hapich A, Psychogios MN et al (2019) Computer-aided detection of pulmonary nodules in computed tomography using ClearReadCT. J Med Syst 43:58PubMedCrossRef Wagner A-K, Hapich A, Psychogios MN et al (2019) Computer-aided detection of pulmonary nodules in computed tomography using ClearReadCT. J Med Syst 43:58PubMedCrossRef
29.
go back to reference Fischer AM, Varga-Szemes A, Martin SS et al (2020) Artificial intelligence-based fully automated per lobe segmentation and emphysema-quantification based on chest computed tomography compared with global initiative for chronic obstructive lung disease severity of smokers. J Thor Imaging 35:S28–S34CrossRef Fischer AM, Varga-Szemes A, Martin SS et al (2020) Artificial intelligence-based fully automated per lobe segmentation and emphysema-quantification based on chest computed tomography compared with global initiative for chronic obstructive lung disease severity of smokers. J Thor Imaging 35:S28–S34CrossRef
30.
go back to reference Carreira MJ, Cabello D, Penedo MG, Mosquera A (1998) Computer-aided diagnoses: automatic detection of lung nodules. Med Phys 25:1998–2006PubMedCrossRef Carreira MJ, Cabello D, Penedo MG, Mosquera A (1998) Computer-aided diagnoses: automatic detection of lung nodules. Med Phys 25:1998–2006PubMedCrossRef
31.
go back to reference Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop CM (2014) Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med 35:3–16PubMedCrossRef Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop CM (2014) Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med 35:3–16PubMedCrossRef
32.
go back to reference Yoo H, Kim KH, Singh R et al (2020) Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open 3:e2017135PubMedPubMedCentralCrossRef Yoo H, Kim KH, Singh R et al (2020) Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open 3:e2017135PubMedPubMedCentralCrossRef
33.
go back to reference Hogeweg L, Sanchez CI, Maduskar P et al (2015) Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis. IEEE Trans Med Imaging 34:2429–2442PubMedCrossRef Hogeweg L, Sanchez CI, Maduskar P et al (2015) Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis. IEEE Trans Med Imaging 34:2429–2442PubMedCrossRef
34.
go back to reference Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15:e1002686PubMedPubMedCentralCrossRef Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15:e1002686PubMedPubMedCentralCrossRef
35.
go back to reference Yates EJ, Yates LC, Harvey H (2019) Re: machine learning "red dot": open-source, cloud, deep convolutional neural networks in chest radiograph binary normality classification. A reply. Clin Radiol 74:162–162PubMedCrossRef Yates EJ, Yates LC, Harvey H (2019) Re: machine learning "red dot": open-source, cloud, deep convolutional neural networks in chest radiograph binary normality classification. A reply. Clin Radiol 74:162–162PubMedCrossRef
36.
go back to reference Behzadi-Khormouji H, Rostami H, Salehi S et al (2020) Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Comput Methods Prog Biomed 185:105162CrossRef Behzadi-Khormouji H, Rostami H, Salehi S et al (2020) Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Comput Methods Prog Biomed 185:105162CrossRef
37.
go back to reference Wang XS, Peng YF, Lu L et al (2017) ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proc CVPR IEEE 2017:3462–3471 Wang XS, Peng YF, Lu L et al (2017) ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proc CVPR IEEE 2017:3462–3471
38.
go back to reference Mouton A, Pitcher RD, Douglas TS (2010) Computer-aided detection of pulmonary pathology in pediatric chest radiographs. Med Image Comput Comput Assist Interv 13:619–625PubMed Mouton A, Pitcher RD, Douglas TS (2010) Computer-aided detection of pulmonary pathology in pediatric chest radiographs. Med Image Comput Comput Assist Interv 13:619–625PubMed
39.
go back to reference Mahomed N, van Ginneken B, Philipsen RHHM et al (2020) Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children. Pediatr Radiol 50:482–491PubMedCrossRef Mahomed N, van Ginneken B, Philipsen RHHM et al (2020) Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children. Pediatr Radiol 50:482–491PubMedCrossRef
40.
go back to reference Tang YX, Tang YB, Peng YF et al (2020) Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit Med 3:70PubMedPubMedCentralCrossRef Tang YX, Tang YB, Peng YF et al (2020) Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit Med 3:70PubMedPubMedCentralCrossRef
41.
42.
go back to reference Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138PubMedCrossRef Zucker EJ, Barnes ZA, Lungren MP et al (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19:131–138PubMedCrossRef
43.
go back to reference Park S, Lee SM, Kim N et al (2019) Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy. Eur Radiol 29:5341–5348PubMedCrossRef Park S, Lee SM, Kim N et al (2019) Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy. Eur Radiol 29:5341–5348PubMedCrossRef
44.
go back to reference Sheng C, Li L, Pei W (2009) Automatic detection of supporting device positioning in intensive care unit radiography. Int J Med Robot 5:332–340PubMedCrossRef Sheng C, Li L, Pei W (2009) Automatic detection of supporting device positioning in intensive care unit radiography. Int J Med Robot 5:332–340PubMedCrossRef
45.
go back to reference Ramakrishna B, Brown M, Goldin J et al (2012) An improved automatic computer aided tube detection and labeling system on chest radiographs. Proc SPIE 8315 Ramakrishna B, Brown M, Goldin J et al (2012) An improved automatic computer aided tube detection and labeling system on chest radiographs. Proc SPIE 8315
46.
go back to reference Ramakrishna B, Brown M, Goldin J et al (2011) Catheter detection and classification on chest radiographs: an automated prototype computer-aided detection (CAD) system for radiologists. Proc SPIE 7963 Ramakrishna B, Brown M, Goldin J et al (2011) Catheter detection and classification on chest radiographs: an automated prototype computer-aided detection (CAD) system for radiologists. Proc SPIE 7963
47.
go back to reference Yu D, Zhang K, Huang L et al (2020) Detection of peripherally inserted central catheter (PICC) in chest X-ray images: a multi-task deep learning model. Comput Methods Prog Biomed 197:105674CrossRef Yu D, Zhang K, Huang L et al (2020) Detection of peripherally inserted central catheter (PICC) in chest X-ray images: a multi-task deep learning model. Comput Methods Prog Biomed 197:105674CrossRef
48.
go back to reference Lakhani P, Flanders A, Gorniak R (2021) Endotracheal tube position assessment on chest radiographs using deep learning. Radiol Artif Intell 3:e200026PubMedCrossRef Lakhani P, Flanders A, Gorniak R (2021) Endotracheal tube position assessment on chest radiographs using deep learning. Radiol Artif Intell 3:e200026PubMedCrossRef
49.
go back to reference Yi X, Adams SJ, Henderson RDE, Babyn P (2020) Computer-aided assessment of catheters and tubes on radiographs: how good is artificial intelligence for assessment? Radiol Artif Intell 2:e190082PubMedPubMedCentralCrossRef Yi X, Adams SJ, Henderson RDE, Babyn P (2020) Computer-aided assessment of catheters and tubes on radiographs: how good is artificial intelligence for assessment? Radiol Artif Intell 2:e190082PubMedPubMedCentralCrossRef
50.
go back to reference Lakhani P (2017) Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging 30:460–468PubMedPubMedCentralCrossRef Lakhani P (2017) Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging 30:460–468PubMedPubMedCentralCrossRef
51.
go back to reference Kao EF, Jaw TS, Li CW et al (2015) Automated detection of endotracheal tubes in paediatric chest radiographs. Comput Methods Prog Biomed 118:1–10CrossRef Kao EF, Jaw TS, Li CW et al (2015) Automated detection of endotracheal tubes in paediatric chest radiographs. Comput Methods Prog Biomed 118:1–10CrossRef
52.
go back to reference Yi X, Adams S, Babyn P, Elnajmi A (2020) Automatic catheter and tube detection in pediatric X-ray images using a scale-recurrent network and synthetic data. J Digit Imaging 33:181–190PubMedCrossRef Yi X, Adams S, Babyn P, Elnajmi A (2020) Automatic catheter and tube detection in pediatric X-ray images using a scale-recurrent network and synthetic data. J Digit Imaging 33:181–190PubMedCrossRef
53.
go back to reference Zhao Y, de Bock GH, Vliegenthart R et al (2012) Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Eur Radiol 22:2076–2084PubMedPubMedCentralCrossRef Zhao Y, de Bock GH, Vliegenthart R et al (2012) Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Eur Radiol 22:2076–2084PubMedPubMedCentralCrossRef
54.
go back to reference Silva M, Schaefer-Prokop CM, Jacobs C et al (2018) Detection of subsolid nodules in lung cancer screening: complementary sensitivity of visual reading and computer-aided diagnosis. Investig Radiol 53:441–449CrossRef Silva M, Schaefer-Prokop CM, Jacobs C et al (2018) Detection of subsolid nodules in lung cancer screening: complementary sensitivity of visual reading and computer-aided diagnosis. Investig Radiol 53:441–449CrossRef
55.
go back to reference Baldwin DR, Gustafson J, Pickup L et al (2020) External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax 75:306–312PubMedCrossRef Baldwin DR, Gustafson J, Pickup L et al (2020) External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax 75:306–312PubMedCrossRef
56.
go back to reference Tammemagi M, Ritchie AJ, Atkar-Khattra S et al (2019) Predicting malignancy risk of screen-detected lung nodules-mean diameter or volume. J Thorac Oncol 14:203–211PubMedCrossRef Tammemagi M, Ritchie AJ, Atkar-Khattra S et al (2019) Predicting malignancy risk of screen-detected lung nodules-mean diameter or volume. J Thorac Oncol 14:203–211PubMedCrossRef
57.
go back to reference DeBoer EM, Swiercz W, Heltshe SL et al (2014) Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 145:593–603PubMedCrossRef DeBoer EM, Swiercz W, Heltshe SL et al (2014) Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 145:593–603PubMedCrossRef
58.
go back to reference van Rikxoort EM, Charbonnier J-P, inventors; Thirona B.V., assignee. Computer implemented method for estimating lung perfusion from lung images. Dutch patent NL 2023710B1. 2021 Mar 4 van Rikxoort EM, Charbonnier J-P, inventors; Thirona B.V., assignee. Computer implemented method for estimating lung perfusion from lung images. Dutch patent NL 2023710B1. 2021 Mar 4
59.
go back to reference Li X, Thrall JH, Digumarthy SR et al (2019) Deep learning-enabled system for rapid pneumothorax screening on chest CT. Eur J Radiol 120:108692PubMedCrossRef Li X, Thrall JH, Digumarthy SR et al (2019) Deep learning-enabled system for rapid pneumothorax screening on chest CT. Eur J Radiol 120:108692PubMedCrossRef
60.
go back to reference Rohrich S, Schlegl T, Bardach C et al (2020) Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography. Eur Radiol Exp 4:26PubMedPubMedCentralCrossRef Rohrich S, Schlegl T, Bardach C et al (2020) Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography. Eur Radiol Exp 4:26PubMedPubMedCentralCrossRef
62.
go back to reference Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171PubMedCrossRef Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171PubMedCrossRef
63.
go back to reference MacDougall RD, Zhang Y, Callahan MJ et al (2019) Improving low-dose pediatric abdominal CT by using convolutional neural networks. Radiol Artif Intell 1:e180087PubMedPubMedCentralCrossRef MacDougall RD, Zhang Y, Callahan MJ et al (2019) Improving low-dose pediatric abdominal CT by using convolutional neural networks. Radiol Artif Intell 1:e180087PubMedPubMedCentralCrossRef
64.
go back to reference Alla Takam C, Samba O, Tchagna Kouanou A, Tchiotsop D (2020) Spark architecture for deep learning-based dose optimization in medical imaging. Inform Med Unlocked 19:100335CrossRef Alla Takam C, Samba O, Tchagna Kouanou A, Tchiotsop D (2020) Spark architecture for deep learning-based dose optimization in medical imaging. Inform Med Unlocked 19:100335CrossRef
Metadata
Title
Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective
Authors
Steven Schalekamp
Willemijn M. Klein
Kicky G. van Leeuwen
Publication date
01-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2022
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-05146-0

Other articles of this Issue 11/2022

Pediatric Radiology 11/2022 Go to the issue