Skip to main content
Top
Published in: Pediatric Radiology 10/2018

01-09-2018 | Original Article

Morphological features in juvenile Huntington disease associated with cerebellar atrophy — magnetic resonance imaging morphometric analysis

Authors: Abderrahmane Hedjoudje, Gaël Nicolas, Alice Goldenberg, Catherine Vanhulle, Clémentine Dumant-Forrest, Guillaume Deverrière, Pauline Treguier, Isabelle Michelet, Lucie Guyant-Maréchal, Didier Devys, Emmanuel Gerardin, Jean-Nicolas Dacher, Pierre-Hugues Vivier

Published in: Pediatric Radiology | Issue 10/2018

Login to get access

Abstract

Background

The imaging features of Huntington disease are well known in adults, unlike in juvenile-onset Huntington disease.

Objective

To conduct a morphometric magnetic resonance imaging (MRI) analysis in three juvenile Huntington disease patients (ages 2, 4 and 6 years old) to determine whether quantitative cerebral and cerebellar morphological metrics may provide diagnostically interesting patterns of cerebellar and cerebellar atrophy.

Materials and methods

We report the cases of three siblings with extremely early presentations of juvenile Huntington disease associated with dramatic expansions of the morbid paternal allele from 43 to more than 100 CAG trinucleotide repeats. Automatic segmentation of MRI images of the cerebrum and cerebellum was performed and volumes of cerebral substructures and cerebellar lobules of juvenile Huntington disease patients were compared to those of 30 normal gender- and age-matched controls. Juvenile Huntington disease segmented volumes were compared to those of age-matched controls by using a z-score.

Results

Three cerebral substructures (caudate nucleus, putamen and globus pallidus) demonstrated a reduction in size of more than three standard deviations from the normal mean although it was not salient in one of them at clinical reading and was not diagnosed. The size of cerebellum lobules, cerebellum grey matter and cerebellum cortex was reduced by more than two standard deviations in the three patients. The cerebellar atrophy was predominant in the posterior lobe.

Conclusion

Our study sheds light on atrophic cerebral and cerebellar structures in juvenile Huntington disease. Automatic segmentations of the cerebellum provide patterns that may be of diagnostic interest in this disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gómez-Tortosa E, del Barrio A, García Ruiz PJ et al (1998) Severity of cognitive impairment in juvenile and late-onset Huntington disease. Arch Neurol 55:835–843CrossRefPubMed Gómez-Tortosa E, del Barrio A, García Ruiz PJ et al (1998) Severity of cognitive impairment in juvenile and late-onset Huntington disease. Arch Neurol 55:835–843CrossRefPubMed
2.
go back to reference Nicolas G, Devys D, Goldenberg A et al (2011) Juvenile Huntington disease in an 18-month-old boy revealed by global developmental delay and reduced cerebellar volume. Am J Med Genet A 155A:815–818CrossRefPubMed Nicolas G, Devys D, Goldenberg A et al (2011) Juvenile Huntington disease in an 18-month-old boy revealed by global developmental delay and reduced cerebellar volume. Am J Med Genet A 155A:815–818CrossRefPubMed
3.
go back to reference Letort D, Gonzalez-Alegre P (2013) Huntington’s disease in children. Handb Clin Neurol 113:1913–1917CrossRefPubMed Letort D, Gonzalez-Alegre P (2013) Huntington’s disease in children. Handb Clin Neurol 113:1913–1917CrossRefPubMed
4.
go back to reference Montoya A, Price BH, Menear M et al (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29PubMedPubMedCentral Montoya A, Price BH, Menear M et al (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29PubMedPubMedCentral
5.
go back to reference Ho VB, Chuang HS, Rovira MJ et al (1995) Juvenile Huntington disease: CT and MR features. AJNR Am J Neuroradiol 16:1405–1412PubMed Ho VB, Chuang HS, Rovira MJ et al (1995) Juvenile Huntington disease: CT and MR features. AJNR Am J Neuroradiol 16:1405–1412PubMed
6.
go back to reference Schapiro M, Cecil KM, Doescher J et al (2004) MR imaging and spectroscopy in juvenile Huntington disease. Pediatr Radiol 34:640–643CrossRefPubMed Schapiro M, Cecil KM, Doescher J et al (2004) MR imaging and spectroscopy in juvenile Huntington disease. Pediatr Radiol 34:640–643CrossRefPubMed
7.
go back to reference Fennema-Notestine C, Archibald SL, Jacobson MW et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995CrossRefPubMed Fennema-Notestine C, Archibald SL, Jacobson MW et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995CrossRefPubMed
8.
go back to reference Kassubek J, Gaus W, Landwehrmeyer GB (2004) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 62:523–524CrossRefPubMed Kassubek J, Gaus W, Landwehrmeyer GB (2004) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 62:523–524CrossRefPubMed
9.
go back to reference Rüb U, Hoche F, Brunt ER et al (2013) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23(2):165–177CrossRefPubMed Rüb U, Hoche F, Brunt ER et al (2013) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23(2):165–177CrossRefPubMed
10.
go back to reference Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed
11.
go back to reference Narayanan PL, Warton C, Rosella Boonzaier N et al (2016) Improved segmentation of cerebellar structures in children. J Neurosci Methods 262:1–13CrossRefPubMed Narayanan PL, Warton C, Rosella Boonzaier N et al (2016) Improved segmentation of cerebellar structures in children. J Neurosci Methods 262:1–13CrossRefPubMed
12.
14.
go back to reference Romero JE, Coupé P, Giraud R et al (2017) CERES: a new cerebellum lobule segmentation method. Neuroimage 147:916–924CrossRefPubMed Romero JE, Coupé P, Giraud R et al (2017) CERES: a new cerebellum lobule segmentation method. Neuroimage 147:916–924CrossRefPubMed
16.
go back to reference Eskildsen SF, Coupé P, Fonov V et al (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59:2362–2373CrossRefPubMed Eskildsen SF, Coupé P, Fonov V et al (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59:2362–2373CrossRefPubMed
17.
go back to reference Romero JE, Manjón JV, Tohka J et al (2015) NABS: non-local automatic brain hemisphere segmentation. Magn Reson Imaging 33:474–484CrossRefPubMed Romero JE, Manjón JV, Tohka J et al (2015) NABS: non-local automatic brain hemisphere segmentation. Magn Reson Imaging 33:474–484CrossRefPubMed
18.
go back to reference Warner JP, Barron LH, Brock DJ (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosomes. Mol Cell Probes 7:235–239CrossRefPubMed Warner JP, Barron LH, Brock DJ (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosomes. Mol Cell Probes 7:235–239CrossRefPubMed
19.
go back to reference (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983 (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983
20.
go back to reference Ranen NG, Stine OC, Abbott MH et al (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57:593–602PubMedPubMedCentral Ranen NG, Stine OC, Abbott MH et al (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57:593–602PubMedPubMedCentral
21.
go back to reference Moser AD, Epping E, Espe-Pfeifer P, Martin E, Zhorne L, Mathews K et al (2017) A survey-based study identifies common but unrecognized symptoms in a large series of juvenile Huntington’s disease. Neurodegener Dis Manag 7:307–315 Moser AD, Epping E, Espe-Pfeifer P, Martin E, Zhorne L, Mathews K et al (2017) A survey-based study identifies common but unrecognized symptoms in a large series of juvenile Huntington’s disease. Neurodegener Dis Manag 7:307–315
22.
go back to reference Ribaï P, Nguyen K, Hahn-Barma V et al (2007) Psychiatric and cognitive difficulties as indicators of juvenile huntington disease onset in 29 patients. Arch Neurol 64:813–819CrossRefPubMed Ribaï P, Nguyen K, Hahn-Barma V et al (2007) Psychiatric and cognitive difficulties as indicators of juvenile huntington disease onset in 29 patients. Arch Neurol 64:813–819CrossRefPubMed
23.
go back to reference Yoon G, Kramer J, Zanko A et al (2006) Speech and language delay are early manifestations of juvenile-onset Huntington disease. Neurology 67:1265–1267CrossRefPubMed Yoon G, Kramer J, Zanko A et al (2006) Speech and language delay are early manifestations of juvenile-onset Huntington disease. Neurology 67:1265–1267CrossRefPubMed
24.
go back to reference Cloud LJ, Rosenblatt A, Margolis RL et al (2012) Seizures in juvenile Huntington’s disease: frequency and characterization in a multicenter cohort. Mov Disord 27:1797–1800CrossRefPubMed Cloud LJ, Rosenblatt A, Margolis RL et al (2012) Seizures in juvenile Huntington’s disease: frequency and characterization in a multicenter cohort. Mov Disord 27:1797–1800CrossRefPubMed
25.
go back to reference Aziz NA, van der Burg JMM, Landwehrmeyer GB et al (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506–1513CrossRefPubMed Aziz NA, van der Burg JMM, Landwehrmeyer GB et al (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506–1513CrossRefPubMed
26.
go back to reference Fusar-Poli P, Radua J, Frascarelli M et al (2014) Evidence of reporting biases in voxel-based morphometry (VBM) studies of psychiatric and neurological disorders. Hum Brain Mapp 35:3052–3065CrossRefPubMed Fusar-Poli P, Radua J, Frascarelli M et al (2014) Evidence of reporting biases in voxel-based morphometry (VBM) studies of psychiatric and neurological disorders. Hum Brain Mapp 35:3052–3065CrossRefPubMed
27.
go back to reference Kühn S, Romanowski A, Schubert F et al (2012) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217:523–529CrossRefPubMed Kühn S, Romanowski A, Schubert F et al (2012) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217:523–529CrossRefPubMed
28.
go back to reference Harris GJ, Pearlson GD, Peyser CE et al (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31:69–75CrossRefPubMed Harris GJ, Pearlson GD, Peyser CE et al (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31:69–75CrossRefPubMed
29.
go back to reference Aylward EH, Brandt J, Codori AM et al (1994) Reduced basal ganglia volume associated with the gene for Huntington’s disease in asymptomatic at-risk persons. Neurology 44:823–828CrossRefPubMed Aylward EH, Brandt J, Codori AM et al (1994) Reduced basal ganglia volume associated with the gene for Huntington’s disease in asymptomatic at-risk persons. Neurology 44:823–828CrossRefPubMed
30.
go back to reference Aggleton JP, Mishkin M (1986) The amygdala: Sensory gateway to the emotions. In: Plutchik R, Kellerman H (eds) Biological foundations of emotion. Academic Press, New York, p 281–299 Aggleton JP, Mishkin M (1986) The amygdala: Sensory gateway to the emotions. In: Plutchik R, Kellerman H (eds) Biological foundations of emotion. Academic Press, New York, p 281–299
31.
go back to reference Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305–309CrossRefPubMed Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305–309CrossRefPubMed
32.
go back to reference Lange KW, Sahakian BJ, Quinn NP et al (1995) Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. J Neurol Neurosurg Psychiatry 58:598–606CrossRefPubMedPubMedCentral Lange KW, Sahakian BJ, Quinn NP et al (1995) Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. J Neurol Neurosurg Psychiatry 58:598–606CrossRefPubMedPubMedCentral
33.
go back to reference Lawrence AD, Sahakian BJ, Hodges JR et al (1996) Executive and mnemonic functions in early Huntington’s disease. Brain J Neurol 119(Pt 5):1633–1645CrossRef Lawrence AD, Sahakian BJ, Hodges JR et al (1996) Executive and mnemonic functions in early Huntington’s disease. Brain J Neurol 119(Pt 5):1633–1645CrossRef
34.
go back to reference Bollen E, Reulen JP, Den Heyer JC et al (1986) Horizontal and vertical saccadic eye movement abnormalities in Huntington’s chorea. J Neurol Sci 74:11–22CrossRefPubMed Bollen E, Reulen JP, Den Heyer JC et al (1986) Horizontal and vertical saccadic eye movement abnormalities in Huntington’s chorea. J Neurol Sci 74:11–22CrossRefPubMed
35.
go back to reference Hansotia P, Wall R, Berendes J (1985) Sleep disturbances and severity of Huntington’s disease. Neurology 35:1672–1674CrossRefPubMed Hansotia P, Wall R, Berendes J (1985) Sleep disturbances and severity of Huntington’s disease. Neurology 35:1672–1674CrossRefPubMed
36.
go back to reference Jeste DV, Barban L, Parisi J (1984) Reduced Purkinje cell density in Huntington’s disease. Exp Neurol 85:78–86CrossRefPubMed Jeste DV, Barban L, Parisi J (1984) Reduced Purkinje cell density in Huntington’s disease. Exp Neurol 85:78–86CrossRefPubMed
37.
38.
go back to reference Vinken P, Bruyn G (1987) Extrapyramidal disorders. Elsevier Science Health Science Division, Amsterdam Vinken P, Bruyn G (1987) Extrapyramidal disorders. Elsevier Science Health Science Division, Amsterdam
39.
go back to reference Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620CrossRefPubMed Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620CrossRefPubMed
40.
41.
go back to reference Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed
42.
go back to reference Rees EM, Farmer R, Cole JH et al (2014) Cerebellar abnormalities in Huntington’s disease: a role in motor and psychiatric impairment? Mov Disord 29:1648–1654CrossRefPubMed Rees EM, Farmer R, Cole JH et al (2014) Cerebellar abnormalities in Huntington’s disease: a role in motor and psychiatric impairment? Mov Disord 29:1648–1654CrossRefPubMed
43.
go back to reference Harper PS (1991) Huntington’s disease. WB Saunders, Philadelphia, p 1–15 Harper PS (1991) Huntington’s disease. WB Saunders, Philadelphia, p 1–15
45.
go back to reference Markham CH, Knox JW (1965) Observations on Huntington’s chorea in childhood. J Pediatr 67:46–57CrossRefPubMed Markham CH, Knox JW (1965) Observations on Huntington’s chorea in childhood. J Pediatr 67:46–57CrossRefPubMed
46.
go back to reference Byers RK, Gilles FH, Fung C (1973) Huntington’s disease in children. Neuropathologic study of four cases. Neurology 23:561–569CrossRefPubMed Byers RK, Gilles FH, Fung C (1973) Huntington’s disease in children. Neuropathologic study of four cases. Neurology 23:561–569CrossRefPubMed
47.
go back to reference Vonsattel JPG, Keller C, Cortes Ramirez EP (2011) Huntington’s disease - neuropathology. Handb Clin Neurol 100:83–100CrossRefPubMed Vonsattel JPG, Keller C, Cortes Ramirez EP (2011) Huntington’s disease - neuropathology. Handb Clin Neurol 100:83–100CrossRefPubMed
48.
go back to reference Rasmussen A, Macias R, Yescas P et al (2000) Huntington disease in children: genotype-phenotype correlation. Neuropediatrics 31:190–194CrossRefPubMed Rasmussen A, Macias R, Yescas P et al (2000) Huntington disease in children: genotype-phenotype correlation. Neuropediatrics 31:190–194CrossRefPubMed
49.
go back to reference Gencik M, Hammans C, Strehl H et al (2002) Chorea Huntington: a rare case with childhood onset. Neuropediatrics 33:90–92CrossRefPubMed Gencik M, Hammans C, Strehl H et al (2002) Chorea Huntington: a rare case with childhood onset. Neuropediatrics 33:90–92CrossRefPubMed
50.
go back to reference Milunsky JM, Maher TA, Loose BA et al (2003) XL PCR for the detection of large trinucleotide expansions in juvenile Huntington’s disease. Clin Genet 64:70–73CrossRefPubMed Milunsky JM, Maher TA, Loose BA et al (2003) XL PCR for the detection of large trinucleotide expansions in juvenile Huntington’s disease. Clin Genet 64:70–73CrossRefPubMed
51.
go back to reference Nahhas FA, Garbern J, Krajewski KM et al (2005) Juvenile onset Huntington disease resulting from a very large maternal expansion. Am J Med Genet A 137A:328–331CrossRefPubMed Nahhas FA, Garbern J, Krajewski KM et al (2005) Juvenile onset Huntington disease resulting from a very large maternal expansion. Am J Med Genet A 137A:328–331CrossRefPubMed
52.
go back to reference Seneca S, Fagnart D, Keymolen K et al (2004) Early onset Huntington disease: a neuronal degeneration syndrome. Eur J Pediatr 163:717–721CrossRefPubMed Seneca S, Fagnart D, Keymolen K et al (2004) Early onset Huntington disease: a neuronal degeneration syndrome. Eur J Pediatr 163:717–721CrossRefPubMed
53.
go back to reference Sakazume S, Yoshinari S, Oguma E et al (2009) A patient with early onset Huntington disease and severe cerebellar atrophy. Am J Med Genet A 149A:598–601CrossRefPubMed Sakazume S, Yoshinari S, Oguma E et al (2009) A patient with early onset Huntington disease and severe cerebellar atrophy. Am J Med Genet A 149A:598–601CrossRefPubMed
54.
55.
go back to reference Crooks R, Mitchell T, Thom M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Res 41:63–73CrossRefPubMed Crooks R, Mitchell T, Thom M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Res 41:63–73CrossRefPubMed
56.
go back to reference Hagemann G, Lemieux L, Free SL et al (2002) Cerebellar volumes in newly diagnosed and chronic epilepsy. J Neurol 249:1651–1658CrossRefPubMed Hagemann G, Lemieux L, Free SL et al (2002) Cerebellar volumes in newly diagnosed and chronic epilepsy. J Neurol 249:1651–1658CrossRefPubMed
57.
go back to reference Guo CC, Tan R, Hodges JR et al (2016) Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain J Neurol 139:1527–1538CrossRef Guo CC, Tan R, Hodges JR et al (2016) Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain J Neurol 139:1527–1538CrossRef
58.
59.
go back to reference Squitieri F, Pustorino G, Cannella M et al (2003) Highly disabling cerebellar presentation in Huntington disease. Eur J Neurol 10:443–444CrossRefPubMed Squitieri F, Pustorino G, Cannella M et al (2003) Highly disabling cerebellar presentation in Huntington disease. Eur J Neurol 10:443–444CrossRefPubMed
Metadata
Title
Morphological features in juvenile Huntington disease associated with cerebellar atrophy — magnetic resonance imaging morphometric analysis
Authors
Abderrahmane Hedjoudje
Gaël Nicolas
Alice Goldenberg
Catherine Vanhulle
Clémentine Dumant-Forrest
Guillaume Deverrière
Pauline Treguier
Isabelle Michelet
Lucie Guyant-Maréchal
Didier Devys
Emmanuel Gerardin
Jean-Nicolas Dacher
Pierre-Hugues Vivier
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 10/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4167-z

Other articles of this Issue 10/2018

Pediatric Radiology 10/2018 Go to the issue

Minisymposium: Education in radiology

Teaching and learning in the millennial age

Minisymposium: Education in radiology

Documenting your career as an educator electronically

Minisymposium: Education in radiology

Learning, teaching and writing with reference managers