Skip to main content
Top
Published in: Pediatric Radiology 10/2018

01-09-2018 | Original Article

Surveillance magnetic resonance imaging for isolated optic pathway gliomas: is gadolinium necessary?

Authors: Ezekiel Maloney, A. Luana Stanescu, Francisco A. Perez, Ramesh S. Iyer, Randolph K. Otto, Sarah Leary, Lotte Steuten, Amanda I. Phipps, Dennis W. W. Shaw

Published in: Pediatric Radiology | Issue 10/2018

Login to get access

Abstract

Background

Pediatric optic pathway gliomas are typically indolent but have a variable clinical course. Treatment is dictated by symptoms and changes on contrast-enhanced MRI examinations. Gadolinium retention in children has motivated parsimonious use of gadolinium-based contrast agents.

Objectives

To determine surveillance MR factors that motivate changes in tumor-directed therapies and extrapolate cost-efficacy of a non-contrast follow-up protocol.

Materials and methods

Using an imaging database search we identified children with isolated optic pathway gliomas and ≥3 follow-up contrast-enhanced MRIs. We reviewed medical records and imaging for: (1) coincident changes on contrast-enhanced MRI and tumor-directed therapy, (2) demographics and duration of follow-up, (3) motivations for intervention, (4) assessment of gadolinium-based contrast agents’ utility and (5) health care utilization data. We assessed cost impact in terms of relative value unit (RVU) burden.

Results

We included 17 neurofibromatosis type 1 (NF1) and 21 non-NF1 patients who underwent a median 16.9 and 24.3 cumulative contrast-enhanced MR exams over 7.7 years and 8.1 years of follow-up, respectively. Eight children (one with NF1) had intervention based on contrast-enhanced MR findings alone. For these eight, increased tumor size was the only common feature, and it was apparent on non-contrast T2 sequences. For the median patient, a non-contrast follow-up protocol could result in 15.9 (NF1) and 23.3 (non-NF1) fewer gadolinium-based contrast agent administrations, and a 39% lower yearly RVU burden.

Conclusion

Pediatric patients with isolated optic pathway gliomas undergo a large number of routine contrast-enhanced MR follow-up exams. Gadolinium might not be needed for these exams to inform management decisions. Secondary benefits of a non-contrast follow-up protocol include decreased cost and risk to the patient.
Literature
1.
go back to reference Gale EM, Caravan P, Rao AG et al (2017) Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr Radiol 47:507–521CrossRefPubMed Gale EM, Caravan P, Rao AG et al (2017) Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr Radiol 47:507–521CrossRefPubMed
2.
go back to reference McDonald JS, McDonald RJ, Jentoft ME et al (2017) Intracranial gadolinium deposition following gadodiamide-enhanced magnetic resonance imaging in pediatric patients: a case-control study. JAMA Pediatr 171:705–707CrossRefPubMed McDonald JS, McDonald RJ, Jentoft ME et al (2017) Intracranial gadolinium deposition following gadodiamide-enhanced magnetic resonance imaging in pediatric patients: a case-control study. JAMA Pediatr 171:705–707CrossRefPubMed
3.
go back to reference Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMed Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMed
4.
go back to reference Miller JH, Hu HH, Pokorney A et al (2015) MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 136:e1637–e1640CrossRefPubMed Miller JH, Hu HH, Pokorney A et al (2015) MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 136:e1637–e1640CrossRefPubMed
5.
go back to reference Mithal LB, Patel PS, Mithal D et al (2017) Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America. Pediatr Radiol 47:657–664CrossRefPubMed Mithal LB, Patel PS, Mithal D et al (2017) Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America. Pediatr Radiol 47:657–664CrossRefPubMed
6.
go back to reference Roberts DR, Chatterjee AR, Yazdani M et al (2016) Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent. AJNR Am J Neuroradiol 37:2340–2347CrossRefPubMedPubMedCentral Roberts DR, Chatterjee AR, Yazdani M et al (2016) Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent. AJNR Am J Neuroradiol 37:2340–2347CrossRefPubMedPubMedCentral
7.
go back to reference Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol 51:447–453CrossRef Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol 51:447–453CrossRef
8.
go back to reference Roberts DR, Lindhorst SM, Welsh CT et al (2016) High levels of gadolinium deposition in the skin of a patient with normal renal function. Investig Radiol 51:280–289 Roberts DR, Lindhorst SM, Welsh CT et al (2016) High levels of gadolinium deposition in the skin of a patient with normal renal function. Investig Radiol 51:280–289
9.
go back to reference Maximova N, Gregori M, Zennaro F et al (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology 281:418–426CrossRefPubMed Maximova N, Gregori M, Zennaro F et al (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology 281:418–426CrossRefPubMed
11.
go back to reference Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. AJR Am J Roentgenol 207:229–233CrossRefPubMed Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. AJR Am J Roentgenol 207:229–233CrossRefPubMed
16.
go back to reference Goischke HK (2017) Safety assessment of gadolinium-based contrast agents (GBCAs) requires consideration of long-term adverse effects in all human tissues. Mult Scler J Exp Transl Clin 3:2055217317704450PubMedPubMedCentral Goischke HK (2017) Safety assessment of gadolinium-based contrast agents (GBCAs) requires consideration of long-term adverse effects in all human tissues. Mult Scler J Exp Transl Clin 3:2055217317704450PubMedPubMedCentral
17.
go back to reference Gupta A, Al-Dasuqi K, Xia F et al (2017) The use of noncontrast quantitative MRI to detect gadolinium-enhancing multiple sclerosis brain lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol 38:1317–1322CrossRefPubMedPubMedCentral Gupta A, Al-Dasuqi K, Xia F et al (2017) The use of noncontrast quantitative MRI to detect gadolinium-enhancing multiple sclerosis brain lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol 38:1317–1322CrossRefPubMedPubMedCentral
18.
go back to reference Heideman RL (1993) Tumors of the central nervous system. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology. Lippincott-Raven, Philadelphia, pp 633–681 Heideman RL (1993) Tumors of the central nervous system. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology. Lippincott-Raven, Philadelphia, pp 633–681
19.
go back to reference Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol 17:iv1–iv62CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol 17:iv1–iv62CrossRefPubMedPubMedCentral
20.
go back to reference Albers AC, Gutmann DH (2009) Gliomas in patients with neurofibromatosis type 1. Expert Rev Neurother 9:535–539CrossRefPubMed Albers AC, Gutmann DH (2009) Gliomas in patients with neurofibromatosis type 1. Expert Rev Neurother 9:535–539CrossRefPubMed
22.
go back to reference Wan MJ, Ullrich NJ, Manley PE et al (2016) Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neuro Oncol 129:173–178CrossRef Wan MJ, Ullrich NJ, Manley PE et al (2016) Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neuro Oncol 129:173–178CrossRef
23.
go back to reference Gaudino S, Martucci M, Russo R et al (2017) MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma. Childs Nerv Syst 33:35–54CrossRefPubMed Gaudino S, Martucci M, Russo R et al (2017) MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma. Childs Nerv Syst 33:35–54CrossRefPubMed
24.
go back to reference Hernaiz Driever P, von Hornstein S, Pietsch T et al (2010) Natural history and management of low-grade glioma in NF-1 children. J Neuro Oncol 100:199–207CrossRef Hernaiz Driever P, von Hornstein S, Pietsch T et al (2010) Natural history and management of low-grade glioma in NF-1 children. J Neuro Oncol 100:199–207CrossRef
25.
go back to reference Kornreich L, Blaser S, Schwarz M et al (2001) Optic pathway glioma: correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol 22:1963–1969PubMed Kornreich L, Blaser S, Schwarz M et al (2001) Optic pathway glioma: correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol 22:1963–1969PubMed
26.
go back to reference Kerrison JB (2005) Chapter 38: phacomatoses. In: Miller NR (ed) Walsh & Hoyt's clinical neuro-ophthalmology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1823–1898 Kerrison JB (2005) Chapter 38: phacomatoses. In: Miller NR (ed) Walsh & Hoyt's clinical neuro-ophthalmology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1823–1898
27.
go back to reference Chateil JF, Soussotte C, Pedespan JM et al (2001) MRI and clinical differences between optic pathway tumours in children with and without neurofibromatosis. Br J Radiol 74:24–31CrossRefPubMed Chateil JF, Soussotte C, Pedespan JM et al (2001) MRI and clinical differences between optic pathway tumours in children with and without neurofibromatosis. Br J Radiol 74:24–31CrossRefPubMed
28.
go back to reference Prada CE, Hufnagel RB, Hummel TR et al (2015) The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr 167:851–856 Prada CE, Hufnagel RB, Hummel TR et al (2015) The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr 167:851–856
29.
go back to reference Listernick R, Ferner RE, Liu GT, Gutmann DH (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198CrossRefPubMed Listernick R, Ferner RE, Liu GT, Gutmann DH (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198CrossRefPubMed
30.
go back to reference Balcer LJ, Liu GT, Heller G et al (2001) Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas. Relation to tumor location by magnetic resonance imaging. Am J Ophthalmol 131:442–445CrossRefPubMed Balcer LJ, Liu GT, Heller G et al (2001) Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas. Relation to tumor location by magnetic resonance imaging. Am J Ophthalmol 131:442–445CrossRefPubMed
31.
go back to reference Listernick R, Louis DN, Packer RJ, Gutmann DH (1997) Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 optic pathway glioma task force. Neuro Oncol 41:143–149 Listernick R, Louis DN, Packer RJ, Gutmann DH (1997) Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 optic pathway glioma task force. Neuro Oncol 41:143–149
32.
33.
go back to reference Thiagalingam S, Flaherty M, Billson F, North K (2004) Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology 111:568–577CrossRefPubMed Thiagalingam S, Flaherty M, Billson F, North K (2004) Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology 111:568–577CrossRefPubMed
34.
go back to reference Fisher MJ, Loguidice M, Gutmann DH et al (2012) Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology 14:790–797CrossRefPubMedPubMedCentral Fisher MJ, Loguidice M, Gutmann DH et al (2012) Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology 14:790–797CrossRefPubMedPubMedCentral
35.
go back to reference Ater JL, Zhou T, Holmes E et al (2012) Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children's oncology group. J Clin Oncol 30:2641–2647CrossRefPubMedPubMedCentral Ater JL, Zhou T, Holmes E et al (2012) Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children's oncology group. J Clin Oncol 30:2641–2647CrossRefPubMedPubMedCentral
36.
go back to reference Kelly JP, Leary S, Khanna P, Weiss AH (2012) Longitudinal measures of visual function, tumor volume, and prediction of visual outcomes after treatment of optic pathway gliomas. Ophthalmology 119:1231–1237CrossRefPubMed Kelly JP, Leary S, Khanna P, Weiss AH (2012) Longitudinal measures of visual function, tumor volume, and prediction of visual outcomes after treatment of optic pathway gliomas. Ophthalmology 119:1231–1237CrossRefPubMed
37.
go back to reference Shofty B, Mauda-Havakuk M, Weizman L et al (2015) The effect of chemotherapy on optic pathway gliomas and their sub-components: a volumetric MR analysis study. Pediatr Blood Cancer 62:1353–1359CrossRefPubMed Shofty B, Mauda-Havakuk M, Weizman L et al (2015) The effect of chemotherapy on optic pathway gliomas and their sub-components: a volumetric MR analysis study. Pediatr Blood Cancer 62:1353–1359CrossRefPubMed
38.
go back to reference van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRefPubMed van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRefPubMed
42.
go back to reference Clemens J, Gottlieb JD (2017) In the shadow of a giant: Medicare's influence on private physician payments. J Polit Econ 125:1–39CrossRefPubMed Clemens J, Gottlieb JD (2017) In the shadow of a giant: Medicare's influence on private physician payments. J Polit Econ 125:1–39CrossRefPubMed
44.
go back to reference Taylor T, Jaspan T, Milano G et al (2008) Radiological classification of optic pathway gliomas: experience of a modified functional classification system. Br J Radiol 81:761–766CrossRefPubMed Taylor T, Jaspan T, Milano G et al (2008) Radiological classification of optic pathway gliomas: experience of a modified functional classification system. Br J Radiol 81:761–766CrossRefPubMed
45.
go back to reference Dillman JR, Ellis JH, Cohan RH et al (2007) Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol 189:1533–1538CrossRefPubMed Dillman JR, Ellis JH, Cohan RH et al (2007) Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol 189:1533–1538CrossRefPubMed
46.
go back to reference Astrup J (2003) Natural history and clinical management of optic pathway glioma. Br J Neurosurg 17:327–335CrossRefPubMed Astrup J (2003) Natural history and clinical management of optic pathway glioma. Br J Neurosurg 17:327–335CrossRefPubMed
47.
go back to reference Dodge HW Jr, Love JG, Craig WM et al (1958) Gliomas of the optic nerves. AMA Arch Neurol Psychiatry 79:607–621 Dodge HW Jr, Love JG, Craig WM et al (1958) Gliomas of the optic nerves. AMA Arch Neurol Psychiatry 79:607–621
48.
go back to reference Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMed Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMed
49.
go back to reference Pollack IF, Hoffman HJ, Humphreys RP, Becker L (1993) The long-term outcome after surgical treatment of dorsally exophytic brain-stem gliomas. J Neurosurg 78:859–863CrossRefPubMed Pollack IF, Hoffman HJ, Humphreys RP, Becker L (1993) The long-term outcome after surgical treatment of dorsally exophytic brain-stem gliomas. J Neurosurg 78:859–863CrossRefPubMed
50.
51.
go back to reference Lambron J, Rakotonjanahary J, Loisel D et al (2016) Can we improve accuracy and reliability of MRI interpretation in children with optic pathway glioma? Proposal for a reproducible imaging classification. Neuroradiology 58:197–208CrossRefPubMed Lambron J, Rakotonjanahary J, Loisel D et al (2016) Can we improve accuracy and reliability of MRI interpretation in children with optic pathway glioma? Proposal for a reproducible imaging classification. Neuroradiology 58:197–208CrossRefPubMed
52.
go back to reference Weizman L, Sira LB, Joskowicz L et al (2014) Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Med Phys 41:052303CrossRefPubMedPubMedCentral Weizman L, Sira LB, Joskowicz L et al (2014) Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Med Phys 41:052303CrossRefPubMedPubMedCentral
53.
go back to reference Weizman L, Ben Sira L, Joskowicz L et al (2012) Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16:177–188CrossRefPubMed Weizman L, Ben Sira L, Joskowicz L et al (2012) Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16:177–188CrossRefPubMed
54.
go back to reference Shofty B, Weizman L, Joskowicz L et al (2011) MRI internal segmentation of optic pathway gliomas: clinical implementation of a novel algorithm. Childs Nerv Syst 27:1265–1272CrossRefPubMed Shofty B, Weizman L, Joskowicz L et al (2011) MRI internal segmentation of optic pathway gliomas: clinical implementation of a novel algorithm. Childs Nerv Syst 27:1265–1272CrossRefPubMed
55.
go back to reference Gaudino S, Quaglio F, Schiarelli C et al (2012) Spontaneous modifications of contrast enhancement in childhood non-cerebellar pilocytic astrocytomas. Neuroradiology 54:989–995CrossRefPubMed Gaudino S, Quaglio F, Schiarelli C et al (2012) Spontaneous modifications of contrast enhancement in childhood non-cerebellar pilocytic astrocytomas. Neuroradiology 54:989–995CrossRefPubMed
56.
go back to reference Beni-Adani L, Gomori M, Spektor S, Constantini S (2000) Cyst wall enhancement in pilocytic astrocytoma: neoplastic or reactive phenomena. Pediatr Neurosurg 32:234–239CrossRefPubMed Beni-Adani L, Gomori M, Spektor S, Constantini S (2000) Cyst wall enhancement in pilocytic astrocytoma: neoplastic or reactive phenomena. Pediatr Neurosurg 32:234–239CrossRefPubMed
57.
go back to reference Takeuchi H, Kubota T, Sato K, Arishima H (2004) Ultrastructure of capillary endothelium in pilocytic astrocytomas. Brain Tumor Pathol 21:23–26CrossRefPubMed Takeuchi H, Kubota T, Sato K, Arishima H (2004) Ultrastructure of capillary endothelium in pilocytic astrocytomas. Brain Tumor Pathol 21:23–26CrossRefPubMed
58.
go back to reference Strong JA, Hatten HP Jr, Brown MT et al (1993) Pilocytic astrocytoma: correlation between the initial imaging features and clinical aggressiveness. AJR Am J Roentgenol 161:369–372 Strong JA, Hatten HP Jr, Brown MT et al (1993) Pilocytic astrocytoma: correlation between the initial imaging features and clinical aggressiveness. AJR Am J Roentgenol 161:369–372
59.
go back to reference Jittapiromsak N, Hou P, Liu HL et al (2017) Prognostic role of conventional and dynamic contrast-enhanced MRI in optic pathway gliomas. J Neuroimaging 27:594–601CrossRefPubMed Jittapiromsak N, Hou P, Liu HL et al (2017) Prognostic role of conventional and dynamic contrast-enhanced MRI in optic pathway gliomas. J Neuroimaging 27:594–601CrossRefPubMed
60.
go back to reference Jost SC, Ackerman JW, Garbow JR et al (2008) Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol 38:1293–1299CrossRefPubMed Jost SC, Ackerman JW, Garbow JR et al (2008) Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol 38:1293–1299CrossRefPubMed
63.
go back to reference Guillamo JS, Creange A, Kalifa C et al (2003) Prognostic factors of CNS tumours in neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain 126:152–160CrossRefPubMed Guillamo JS, Creange A, Kalifa C et al (2003) Prognostic factors of CNS tumours in neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain 126:152–160CrossRefPubMed
64.
go back to reference Mentzel HJ, Seidel J, Fitzek C et al (2005) Pediatric brain MRI in neurofibromatosis type I. Eur Radiol 15:814–822CrossRefPubMed Mentzel HJ, Seidel J, Fitzek C et al (2005) Pediatric brain MRI in neurofibromatosis type I. Eur Radiol 15:814–822CrossRefPubMed
65.
go back to reference Bonawitz C, Castillo M, Chin CT et al (1998) Usefulness of contrast material in MR of patients with neurofibromatosis type 1. AJNR Am J Neuroradiol 19:541–546PubMed Bonawitz C, Castillo M, Chin CT et al (1998) Usefulness of contrast material in MR of patients with neurofibromatosis type 1. AJNR Am J Neuroradiol 19:541–546PubMed
66.
go back to reference Jost G, Lenhard DC, Sieber MA et al (2016) Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents. Investig Radiol 51:83–89CrossRef Jost G, Lenhard DC, Sieber MA et al (2016) Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents. Investig Radiol 51:83–89CrossRef
67.
go back to reference Sieber MA, Steger-Hartmann T, Lengsfeld P, Pietsch H (2009) Gadolinium-based contrast agents and NSF: evidence from animal experience. J Magn Reson Imaging 30:1268–1276CrossRefPubMed Sieber MA, Steger-Hartmann T, Lengsfeld P, Pietsch H (2009) Gadolinium-based contrast agents and NSF: evidence from animal experience. J Magn Reson Imaging 30:1268–1276CrossRefPubMed
68.
go back to reference Radbruch A, Haase R, Kickingereder P et al (2017) Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology 283:828–836CrossRefPubMed Radbruch A, Haase R, Kickingereder P et al (2017) Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology 283:828–836CrossRefPubMed
69.
go back to reference Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMed Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMed
70.
go back to reference Abraham JL, Thakral C (2008) Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur J Radiol 66:200–207CrossRefPubMed Abraham JL, Thakral C (2008) Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur J Radiol 66:200–207CrossRefPubMed
71.
go back to reference Costello JR, Kalb B, Martin DR (2016) Incidence and risk factors for gadolinium-based contrast agent immediate reactions. Top Magn Reson Imaging 25:257–263CrossRefPubMed Costello JR, Kalb B, Martin DR (2016) Incidence and risk factors for gadolinium-based contrast agent immediate reactions. Top Magn Reson Imaging 25:257–263CrossRefPubMed
72.
go back to reference Jung JW, Kang HR, Kim MH et al (2012) Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology 264:414–422CrossRefPubMed Jung JW, Kang HR, Kim MH et al (2012) Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology 264:414–422CrossRefPubMed
73.
75.
go back to reference Patton DD, Woolfenden JM (1989) A utility-based model for comparing the cost-effectiveness of diagnostic studies. Investig Radiol 24:263–271CrossRef Patton DD, Woolfenden JM (1989) A utility-based model for comparing the cost-effectiveness of diagnostic studies. Investig Radiol 24:263–271CrossRef
76.
go back to reference Hollingworth W, Jarvik JG (2007) Technology assessment in radiology: putting the evidence in evidence-based radiology. Radiology 244:31–38CrossRefPubMed Hollingworth W, Jarvik JG (2007) Technology assessment in radiology: putting the evidence in evidence-based radiology. Radiology 244:31–38CrossRefPubMed
Metadata
Title
Surveillance magnetic resonance imaging for isolated optic pathway gliomas: is gadolinium necessary?
Authors
Ezekiel Maloney
A. Luana Stanescu
Francisco A. Perez
Ramesh S. Iyer
Randolph K. Otto
Sarah Leary
Lotte Steuten
Amanda I. Phipps
Dennis W. W. Shaw
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 10/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4154-4

Other articles of this Issue 10/2018

Pediatric Radiology 10/2018 Go to the issue

Minisymposium: Education in radiology

Learning, teaching and writing with reference managers

Minisymposium: Education in radiology

Documenting your career as an educator electronically

Minisymposium: Education in radiology

Designing and testing an educational innovation

Minisymposium: Education in radiology

Waking up your lecture