Skip to main content
Top
Published in: Pediatric Radiology 11/2017

01-10-2017 | Minisymposium: Imaging Pneumonia

Lung magnetic resonance imaging for pneumonia in children

Authors: Mark C . Liszewski, Süreyya Görkem, Kushaljit S. Sodhi, Edward Y. Lee

Published in: Pediatric Radiology | Issue 11/2017

Login to get access

Abstract

Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described.
Literature
1.
go back to reference Rudan I, Tomaskovic L, Boschi-Pinto C et al (2004) Global estimate of the incidence of clinical pneumonia among children under five years of age. Bull World Health Organ 82:895–903PubMed Rudan I, Tomaskovic L, Boschi-Pinto C et al (2004) Global estimate of the incidence of clinical pneumonia among children under five years of age. Bull World Health Organ 82:895–903PubMed
2.
go back to reference Jokinen C, Heiskanen L, Juvonen H et al (1993) Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 137:977–988CrossRefPubMed Jokinen C, Heiskanen L, Juvonen H et al (1993) Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 137:977–988CrossRefPubMed
3.
go back to reference Swingler GH, Hussey GD, Zwarenstein M (1998) Randomised controlled trial of clinical outcome after chest radiograph in ambulatory acute lower-respiratory infection in children. Lancet 351:404–408CrossRefPubMed Swingler GH, Hussey GD, Zwarenstein M (1998) Randomised controlled trial of clinical outcome after chest radiograph in ambulatory acute lower-respiratory infection in children. Lancet 351:404–408CrossRefPubMed
4.
go back to reference Cao AM, Choy JP, Mohanakrishnan LN et al (2013) Chest radiographs for acute lower respiratory tract infections. Cochrane Database Syst Rev 12:Cd009119 Cao AM, Choy JP, Mohanakrishnan LN et al (2013) Chest radiographs for acute lower respiratory tract infections. Cochrane Database Syst Rev 12:Cd009119
5.
go back to reference Wheeler JH, Fishman EK (1996) Computed tomography in the management of chest infections: current status. Clin Infect Dis 23:232–240CrossRefPubMed Wheeler JH, Fishman EK (1996) Computed tomography in the management of chest infections: current status. Clin Infect Dis 23:232–240CrossRefPubMed
6.
go back to reference Lahde S, Jartti A, Broas M et al (2002) HRCT findings in the lungs of primary care patients with lower respiratory tract infection. Acta Radiol 43:159–163CrossRefPubMed Lahde S, Jartti A, Broas M et al (2002) HRCT findings in the lungs of primary care patients with lower respiratory tract infection. Acta Radiol 43:159–163CrossRefPubMed
7.
go back to reference Syrjala H, Broas M, Suramo I et al (1998) High-resolution computed tomography for the diagnosis of community-acquired pneumonia. Clin Infect Dis 27:358–363CrossRefPubMed Syrjala H, Broas M, Suramo I et al (1998) High-resolution computed tomography for the diagnosis of community-acquired pneumonia. Clin Infect Dis 27:358–363CrossRefPubMed
8.
go back to reference Siegel MJ (1990) Chest applications of magnetic resonance imaging in children. Top Magn Reson Imaging 3:1–23CrossRefPubMed Siegel MJ (1990) Chest applications of magnetic resonance imaging in children. Top Magn Reson Imaging 3:1–23CrossRefPubMed
10.
go back to reference Rupprecht T, Bowing B, Kuth R et al (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756PubMed Rupprecht T, Bowing B, Kuth R et al (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756PubMed
11.
go back to reference Wagner M, Bowing B, Kuth R et al (2001) Low field thoracic MRI--a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983CrossRefPubMed Wagner M, Bowing B, Kuth R et al (2001) Low field thoracic MRI--a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983CrossRefPubMed
12.
go back to reference Yikilmaz A, Koc A, Coskun A et al (2011) Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs. Acta Radiol 52:914–919CrossRefPubMed Yikilmaz A, Koc A, Coskun A et al (2011) Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs. Acta Radiol 52:914–919CrossRefPubMed
13.
go back to reference Serra G, Milito C, Mitrevski M et al (2011) Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radiosensitivity. Chest 140:1581–1589CrossRefPubMed Serra G, Milito C, Mitrevski M et al (2011) Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radiosensitivity. Chest 140:1581–1589CrossRefPubMed
14.
go back to reference Attenberger UI, Morelli JN, Henzler T et al (2014) 3 Tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: initial results in comparison to HRCT. Eur J Radiol 83:e61–e66CrossRefPubMed Attenberger UI, Morelli JN, Henzler T et al (2014) 3 Tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: initial results in comparison to HRCT. Eur J Radiol 83:e61–e66CrossRefPubMed
15.
go back to reference Rieger C, Herzog P, Eibel R et al (2008) Pulmonary MRI--a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 16:599–606CrossRefPubMed Rieger C, Herzog P, Eibel R et al (2008) Pulmonary MRI--a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 16:599–606CrossRefPubMed
16.
go back to reference Ekinci A, Yucel Ucarkus T, Okur A et al (2017) MRI of pneumonia in immunocompromised patients: comparison with CT. Diagn Interv Radiol 23:22–28CrossRefPubMed Ekinci A, Yucel Ucarkus T, Okur A et al (2017) MRI of pneumonia in immunocompromised patients: comparison with CT. Diagn Interv Radiol 23:22–28CrossRefPubMed
17.
go back to reference Sodhi KS, Khandelwal N, Saxena AK et al (2016a) Rapid lung MRI - paradigm shift in evaluation of febrile neutropenia in children with leukemia: a pilot study. Leuk Lymphoma 57:70–75CrossRefPubMed Sodhi KS, Khandelwal N, Saxena AK et al (2016a) Rapid lung MRI - paradigm shift in evaluation of febrile neutropenia in children with leukemia: a pilot study. Leuk Lymphoma 57:70–75CrossRefPubMed
18.
go back to reference Rizzi EB, Schinina V, Cristofaro M et al (2011) Detection of pulmonary tuberculosis: comparing MR imaging with HRCT. BMC Infect Dis 11:243CrossRefPubMed Rizzi EB, Schinina V, Cristofaro M et al (2011) Detection of pulmonary tuberculosis: comparing MR imaging with HRCT. BMC Infect Dis 11:243CrossRefPubMed
19.
20.
go back to reference Lee EY (2008) Advancing CT and MR imaging of the lungs and airways in children: imaging into practice. Pediatr Radiol 38:S208–S212CrossRefPubMed Lee EY (2008) Advancing CT and MR imaging of the lungs and airways in children: imaging into practice. Pediatr Radiol 38:S208–S212CrossRefPubMed
21.
go back to reference de Amorim e Silva CJ, Mackenzie A, Hallowell LM et al (2006) Practice MRI: reducing the need for sedation and general anaesthesia in children undergoing MRI. Australas Radiol 50:319–323 de Amorim e Silva CJ, Mackenzie A, Hallowell LM et al (2006) Practice MRI: reducing the need for sedation and general anaesthesia in children undergoing MRI. Australas Radiol 50:319–323
22.
go back to reference Heng Vong C, Bajard A, Thiesse P et al (2012) Deep sedation in pediatric imaging: efficacy and safety of intravenous chlorpromazine. Pediatr Radiol 42:552–561CrossRefPubMed Heng Vong C, Bajard A, Thiesse P et al (2012) Deep sedation in pediatric imaging: efficacy and safety of intravenous chlorpromazine. Pediatr Radiol 42:552–561CrossRefPubMed
23.
go back to reference Lutterbey G, Grohe C, Gieseke J et al (2007) Initial experience with lung-MRI at 3.0T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261CrossRefPubMed Lutterbey G, Grohe C, Gieseke J et al (2007) Initial experience with lung-MRI at 3.0T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261CrossRefPubMed
24.
go back to reference Newman B, Krane EJ, Gawande R et al (2014) Chest CT in children: anesthesia and atelectasis. Pediatr Radiol 44:164–172CrossRefPubMed Newman B, Krane EJ, Gawande R et al (2014) Chest CT in children: anesthesia and atelectasis. Pediatr Radiol 44:164–172CrossRefPubMed
25.
go back to reference Gorkem SB, Coskun A, Yikilmaz A et al (2013) Evaluation of pediatric thoracic disorders: comparison of unenhanced fast-imaging-sequence 1.5-T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol 200:1352–1357CrossRefPubMed Gorkem SB, Coskun A, Yikilmaz A et al (2013) Evaluation of pediatric thoracic disorders: comparison of unenhanced fast-imaging-sequence 1.5-T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol 200:1352–1357CrossRefPubMed
26.
go back to reference Sodhi KS, Khandelwal N, Saxena AK et al (2016b) Rapid lung MRI in children with pulmonary infections: time to change our diagnostic algorithms. J Magn Reson Imaging 43:1196–1206CrossRefPubMed Sodhi KS, Khandelwal N, Saxena AK et al (2016b) Rapid lung MRI in children with pulmonary infections: time to change our diagnostic algorithms. J Magn Reson Imaging 43:1196–1206CrossRefPubMed
27.
go back to reference Gorkem SB, Kose S, Lee EY et al (2017) Thoracic MRI evaluation of sarcoidosis in children. Pediatr Pulmonol 52:494–499CrossRefPubMed Gorkem SB, Kose S, Lee EY et al (2017) Thoracic MRI evaluation of sarcoidosis in children. Pediatr Pulmonol 52:494–499CrossRefPubMed
28.
go back to reference Buckingham SJ, Hansell DM (2003) Aspergillus in the lung: diverse and coincident forms. Eur Radiol 13:1786–1800CrossRefPubMed Buckingham SJ, Hansell DM (2003) Aspergillus in the lung: diverse and coincident forms. Eur Radiol 13:1786–1800CrossRefPubMed
29.
go back to reference Donnelly LF, Klosterman LA (1997) Pneumonia in children: decreased parenchymal contrast enhancement--CT sign of intense illness and impending cavitary necrosis. Radiology 205:817–820CrossRefPubMed Donnelly LF, Klosterman LA (1997) Pneumonia in children: decreased parenchymal contrast enhancement--CT sign of intense illness and impending cavitary necrosis. Radiology 205:817–820CrossRefPubMed
30.
go back to reference Eslamy HK, Newman B (2011) Pneumonia in normal and immunocompromised children: an overview and update. Radiol Clin N Am 49:895–920CrossRefPubMed Eslamy HK, Newman B (2011) Pneumonia in normal and immunocompromised children: an overview and update. Radiol Clin N Am 49:895–920CrossRefPubMed
31.
go back to reference Donnelly LF (2001) Practical issues concerning imaging of pulmonary infection in children. J Thorac Imaging 16:238–250CrossRefPubMed Donnelly LF (2001) Practical issues concerning imaging of pulmonary infection in children. J Thorac Imaging 16:238–250CrossRefPubMed
32.
go back to reference Peprah KO, Andronikou S, Goussard P (2012) Characteristic magnetic resonance imaging low T2 signal intensity of necrotic lung parenchyma in children with pulmonary tuberculosis. J Thorac Imaging 27:171–174CrossRefPubMed Peprah KO, Andronikou S, Goussard P (2012) Characteristic magnetic resonance imaging low T2 signal intensity of necrotic lung parenchyma in children with pulmonary tuberculosis. J Thorac Imaging 27:171–174CrossRefPubMed
33.
go back to reference Peltola V, Ruuskanen O, Svedstrom E (2008) Magnetic resonance imaging of lung infections in children. Pediatr Radiol 38:1225–1231CrossRefPubMed Peltola V, Ruuskanen O, Svedstrom E (2008) Magnetic resonance imaging of lung infections in children. Pediatr Radiol 38:1225–1231CrossRefPubMed
34.
go back to reference Osborne D, White P (1979) Radiology of epidemic adenovirus 21 infection of the lower respiratory tract in infants and young children. AJR Am J Roentgenol 133:397–400CrossRefPubMed Osborne D, White P (1979) Radiology of epidemic adenovirus 21 infection of the lower respiratory tract in infants and young children. AJR Am J Roentgenol 133:397–400CrossRefPubMed
35.
go back to reference Westra SJ, Adler B, Yikilmaz A et al (2013) Pulmonary infection. In: Coley BD (ed) Caffey's pediatric diagnostic imaging. Elsevier, Philadelphia, pp 567–581 Westra SJ, Adler B, Yikilmaz A et al (2013) Pulmonary infection. In: Coley BD (ed) Caffey's pediatric diagnostic imaging. Elsevier, Philadelphia, pp 567–581
36.
go back to reference Brady MT, Marcon MJ (2014) Pseudomonas and related genera. In: Cherry JD, Harrison GJ, Kaplan SL et al (eds) Feigin and Cherry's textbook of pediatric infectious diseases. Elsevier, Philadelphia, pp 1582–1605 Brady MT, Marcon MJ (2014) Pseudomonas and related genera. In: Cherry JD, Harrison GJ, Kaplan SL et al (eds) Feigin and Cherry's textbook of pediatric infectious diseases. Elsevier, Philadelphia, pp 1582–1605
37.
go back to reference Chu HQ, Li B, Zhao L et al (2015) Chest imaging comparison between non-tuberculous and tuberculosis mycobacteria in sputum acid fast bacilli smear-positive patients. Eur Rev Med Pharmacol Sci 19:2429–2439PubMed Chu HQ, Li B, Zhao L et al (2015) Chest imaging comparison between non-tuberculous and tuberculosis mycobacteria in sputum acid fast bacilli smear-positive patients. Eur Rev Med Pharmacol Sci 19:2429–2439PubMed
38.
go back to reference Maffessanti M, Candusso M, Brizzi F et al (1996) Cystic fibrosis in children: HRCT findings and distribution of disease. J Thorac Imaging 11:27–38CrossRefPubMed Maffessanti M, Candusso M, Brizzi F et al (1996) Cystic fibrosis in children: HRCT findings and distribution of disease. J Thorac Imaging 11:27–38CrossRefPubMed
39.
go back to reference Kennedy MP, Noone PG, Leigh MW et al (2007) High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 188:1232–1238CrossRefPubMed Kennedy MP, Noone PG, Leigh MW et al (2007) High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 188:1232–1238CrossRefPubMed
40.
go back to reference Girshin M, Shapiro V, Rhee A et al (2009) Increased risk of general anesthesia for high-risk patients undergoing magnetic resonance imaging. J Comput Assist Tomogr 33:312–315CrossRefPubMed Girshin M, Shapiro V, Rhee A et al (2009) Increased risk of general anesthesia for high-risk patients undergoing magnetic resonance imaging. J Comput Assist Tomogr 33:312–315CrossRefPubMed
41.
go back to reference van der Griend BF, Lister NA, McKenzie IM et al (2011) Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg 112:1440–1447CrossRefPubMed van der Griend BF, Lister NA, McKenzie IM et al (2011) Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg 112:1440–1447CrossRefPubMed
42.
go back to reference Rappaport BA, Suresh S, Hertz S et al (2015) Anesthetic neurotoxicity--clinical implications of animal models. N Engl J Med 372:796–797CrossRefPubMed Rappaport BA, Suresh S, Hertz S et al (2015) Anesthetic neurotoxicity--clinical implications of animal models. N Engl J Med 372:796–797CrossRefPubMed
43.
go back to reference Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38CrossRefPubMedPubMedCentral Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38CrossRefPubMedPubMedCentral
44.
go back to reference Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384CrossRefPubMedPubMedCentral Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384CrossRefPubMedPubMedCentral
45.
go back to reference Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061CrossRefPubMedPubMedCentral Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061CrossRefPubMedPubMedCentral
46.
go back to reference Mellon RD, Simone AF, Rappaport BA (2007) Use of anesthetic agents in neonates and young children. Anesth Analg 104:509–520CrossRefPubMed Mellon RD, Simone AF, Rappaport BA (2007) Use of anesthetic agents in neonates and young children. Anesth Analg 104:509–520CrossRefPubMed
47.
go back to reference Grobner T (2006) Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefPubMed Grobner T (2006) Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefPubMed
48.
go back to reference High WA, Ayers RA, Chandler J et al (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:21–26CrossRefPubMed High WA, Ayers RA, Chandler J et al (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:21–26CrossRefPubMed
49.
go back to reference Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362CrossRefPubMed Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362CrossRefPubMed
50.
go back to reference Kanda T, Nakai Y, Aoki S et al (2016) Contribution of metals to brain MR signal intensity: review articles. Jpn J Radiol 34:258–266CrossRefPubMed Kanda T, Nakai Y, Aoki S et al (2016) Contribution of metals to brain MR signal intensity: review articles. Jpn J Radiol 34:258–266CrossRefPubMed
51.
go back to reference Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed
52.
go back to reference Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMed Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMed
53.
go back to reference Hu HH, Pokorney A, Towbin RB et al (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMed Hu HH, Pokorney A, Towbin RB et al (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMed
54.
go back to reference Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58:433–441CrossRefPubMed Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58:433–441CrossRefPubMed
55.
go back to reference Blitman NM, Lee HK, Jain VR et al (2007) Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors. J Comput Assist Tomogr 31:789–794CrossRefPubMed Blitman NM, Lee HK, Jain VR et al (2007) Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors. J Comput Assist Tomogr 31:789–794CrossRefPubMed
56.
57.
go back to reference Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824CrossRefPubMed Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824CrossRefPubMed
58.
go back to reference Lin W, Guo J, Rosen MA et al (2008) Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 60:1135–1146CrossRefPubMedPubMedCentral Lin W, Guo J, Rosen MA et al (2008) Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 60:1135–1146CrossRefPubMedPubMedCentral
59.
go back to reference Miller GW, Mugler JP 3rd, Sá RC et al (2014) Advances in functional and structural imaging of the human lung using proton MRI. NMR Biomed 27:1542–1556CrossRefPubMedPubMedCentral Miller GW, Mugler JP 3rd, Sá RC et al (2014) Advances in functional and structural imaging of the human lung using proton MRI. NMR Biomed 27:1542–1556CrossRefPubMedPubMedCentral
60.
go back to reference Serai SD, Laor T, Dwek JR et al (2014) Feasibility of ultrashort TE (UTE) imaging of children at 1.5 T. Pediatr Radiol 44:103–108CrossRefPubMed Serai SD, Laor T, Dwek JR et al (2014) Feasibility of ultrashort TE (UTE) imaging of children at 1.5 T. Pediatr Radiol 44:103–108CrossRefPubMed
61.
go back to reference Johnson KM, Fain SB, Schiebler ML et al (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250CrossRefPubMed Johnson KM, Fain SB, Schiebler ML et al (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250CrossRefPubMed
Metadata
Title
Lung magnetic resonance imaging for pneumonia in children
Authors
Mark C . Liszewski
Süreyya Görkem
Kushaljit S. Sodhi
Edward Y. Lee
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2017
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-3865-2

Other articles of this Issue 11/2017

Pediatric Radiology 11/2017 Go to the issue