Skip to main content
Top
Published in: Pediatric Cardiology 7/2019

01-10-2019 | Riley Symposium

Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing

Authors: Brian P. Delisle, Yao Yu, Pavan Puvvula, Allison R. Hall, Chad Huff, Anne M. Moon

Published in: Pediatric Cardiology | Issue 7/2019

Login to get access

Abstract

In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.
Literature
1.
go back to reference Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254PubMed Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254PubMed
2.
go back to reference Horsthuis T et al (2009) Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter. Circ Res 105:61–69PubMed Horsthuis T et al (2009) Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter. Circ Res 105:61–69PubMed
3.
go back to reference Marionneau C et al (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234PubMed Marionneau C et al (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234PubMed
4.
go back to reference Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950PubMed Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950PubMed
5.
go back to reference Lloyd-Jones DM et al (2004) Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110:1042–1046PubMed Lloyd-Jones DM et al (2004) Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110:1042–1046PubMed
6.
go back to reference Stecker EC et al (2014) Public health burden of sudden cardiac death in the United States. Circ Arrhythm Electrophysiol 7:212–217PubMedPubMedCentral Stecker EC et al (2014) Public health burden of sudden cardiac death in the United States. Circ Arrhythm Electrophysiol 7:212–217PubMedPubMedCentral
7.
go back to reference Benjamin EJ et al (2009) Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation 119:606–618PubMedPubMedCentral Benjamin EJ et al (2009) Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation 119:606–618PubMedPubMedCentral
8.
go back to reference Postma AV et al (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442PubMed Postma AV et al (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442PubMed
10.
go back to reference Garg V et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447PubMed Garg V et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447PubMed
11.
go back to reference Moskowitz IP et al (2007) A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129:1365–1376PubMed Moskowitz IP et al (2007) A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129:1365–1376PubMed
12.
go back to reference Bezzina CR et al (2013) Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 45:1044–1049PubMedPubMedCentral Bezzina CR et al (2013) Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 45:1044–1049PubMedPubMedCentral
13.
go back to reference Arnolds DE et al (2012) TBX5 drives Scn5a expression to regulate cardiac conduction system function. J Clin Invest 122:2509–2518PubMedPubMedCentral Arnolds DE et al (2012) TBX5 drives Scn5a expression to regulate cardiac conduction system function. J Clin Invest 122:2509–2518PubMedPubMedCentral
14.
go back to reference Benson DW et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573PubMedPubMedCentral Benson DW et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573PubMedPubMedCentral
15.
go back to reference McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655PubMed McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655PubMed
16.
go back to reference van den Boogaard M et al (2012) Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest 122:2519–2530PubMedPubMedCentral van den Boogaard M et al (2012) Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest 122:2519–2530PubMedPubMedCentral
17.
go back to reference den Hoed M et al (2013) Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet 45:621–631 den Hoed M et al (2013) Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet 45:621–631
18.
go back to reference Sotoodehnia N et al (2010) Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 42:1068–1076PubMedPubMedCentral Sotoodehnia N et al (2010) Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 42:1068–1076PubMedPubMedCentral
19.
go back to reference Holm H et al (2010) Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet 42:117–122PubMed Holm H et al (2010) Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet 42:117–122PubMed
20.
go back to reference Arking DE et al (2014) Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet 46:826–836PubMedPubMedCentral Arking DE et al (2014) Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet 46:826–836PubMedPubMedCentral
22.
go back to reference van den Boogaard M et al (2014) A common genetic variant within SCN10A modulates cardiac SCN5A expression. J Clin Invest 124:1844–1852PubMedPubMedCentral van den Boogaard M et al (2014) A common genetic variant within SCN10A modulates cardiac SCN5A expression. J Clin Invest 124:1844–1852PubMedPubMedCentral
23.
go back to reference Hasdemir C et al (2010) Transcriptional profiling of septal wall of the right ventricular outflow tract in patients with idiopathic ventricular arrhythmias. Pacing Clin Electrophysiol 33:159–167PubMed Hasdemir C et al (2010) Transcriptional profiling of septal wall of the right ventricular outflow tract in patients with idiopathic ventricular arrhythmias. Pacing Clin Electrophysiol 33:159–167PubMed
24.
go back to reference Linden H, Williams R, King J, Blair E, Kini U (2009) Ulnar Mammary syndrome and TBX3: expanding the phenotype. Am J Med Genet A 149A:2809–2812PubMed Linden H, Williams R, King J, Blair E, Kini U (2009) Ulnar Mammary syndrome and TBX3: expanding the phenotype. Am J Med Genet A 149A:2809–2812PubMed
25.
go back to reference Meneghini V, Odent S, Platonova N, Egeo A, Merlo GR (2006) Novel TBX3 mutation data in families with ulnar-mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet 49:151–158PubMed Meneghini V, Odent S, Platonova N, Egeo A, Merlo GR (2006) Novel TBX3 mutation data in families with ulnar-mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet 49:151–158PubMed
26.
go back to reference Bakker ML et al (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349PubMed Bakker ML et al (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349PubMed
27.
go back to reference Hoogaars WM et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112PubMedPubMedCentral Hoogaars WM et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112PubMedPubMedCentral
28.
go back to reference Bakker ML et al (2012) T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res 94:439–449PubMed Bakker ML et al (2012) T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res 94:439–449PubMed
29.
go back to reference Frank DU et al (2012) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci USA 109:E154–E163PubMed Frank DU et al (2012) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci USA 109:E154–E163PubMed
30.
go back to reference Wiese C et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397PubMed Wiese C et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397PubMed
31.
go back to reference Aanhaanen WT et al (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104:1267–1274PubMed Aanhaanen WT et al (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104:1267–1274PubMed
32.
go back to reference Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982PubMed Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982PubMed
33.
go back to reference Tellez JO et al (2006) Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res 99:1384–1393PubMed Tellez JO et al (2006) Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res 99:1384–1393PubMed
34.
go back to reference Kreuzberg MM, Willecke K, Bukauskas FF (2006) Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 16:266–272PubMedPubMedCentral Kreuzberg MM, Willecke K, Bukauskas FF (2006) Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 16:266–272PubMedPubMedCentral
35.
go back to reference Pennisi DJ, Rentschler S, Gourdie RG, Fishman GI, Mikawa T (2002) Induction and patterning of the cardiac conduction system. Int J Dev Biol 46:765–775PubMed Pennisi DJ, Rentschler S, Gourdie RG, Fishman GI, Mikawa T (2002) Induction and patterning of the cardiac conduction system. Int J Dev Biol 46:765–775PubMed
36.
go back to reference Myers DC, Fishman GI (2003) Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 13:289–295PubMed Myers DC, Fishman GI (2003) Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 13:289–295PubMed
37.
go back to reference Kornblihtt AR et al (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165PubMed Kornblihtt AR et al (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165PubMed
38.
go back to reference Shabalina SA, Ogurtsov AY, Spiridonov NA, Koonin EV (2014) Evolution at protein ends: major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals. Nucleic Acids Res 42:7132–7144PubMedPubMedCentral Shabalina SA, Ogurtsov AY, Spiridonov NA, Koonin EV (2014) Evolution at protein ends: major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals. Nucleic Acids Res 42:7132–7144PubMedPubMedCentral
39.
go back to reference Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761PubMed Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761PubMed
40.
go back to reference Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282PubMed Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282PubMed
41.
go back to reference Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100:189–192PubMed Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100:189–192PubMed
42.
go back to reference Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223PubMedPubMedCentral Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223PubMedPubMedCentral
43.
go back to reference Schwanhausser B et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMed Schwanhausser B et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMed
44.
go back to reference Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973PubMed Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973PubMed
45.
go back to reference Shahbabian K, Jeronimo C, Forget A, Robert F, Chartrand P (2014) Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic Acids Res 42:8692–8704PubMedPubMedCentral Shahbabian K, Jeronimo C, Forget A, Robert F, Chartrand P (2014) Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic Acids Res 42:8692–8704PubMedPubMedCentral
46.
47.
go back to reference Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4PubMedPubMedCentral Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4PubMedPubMedCentral
48.
go back to reference Anderson CL, Zundel MA, Werner R (2005) Variable promoter usage and alternative splicing in five mouse connexin genes. Genomics 85:238–244PubMed Anderson CL, Zundel MA, Werner R (2005) Variable promoter usage and alternative splicing in five mouse connexin genes. Genomics 85:238–244PubMed
49.
go back to reference Pfeifer I, Anderson C, Werner R, Oltra E (2004) Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res 32:4550–4562PubMedPubMedCentral Pfeifer I, Anderson C, Werner R, Oltra E (2004) Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res 32:4550–4562PubMedPubMedCentral
50.
go back to reference Ebert SN (2012) Tbx3: a new trick for an 'old' myocyte? Cardiovasc Res 94:398–399PubMed Ebert SN (2012) Tbx3: a new trick for an 'old' myocyte? Cardiovasc Res 94:398–399PubMed
51.
go back to reference Boyett MR et al (2006) Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42:175–197PubMed Boyett MR et al (2006) Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42:175–197PubMed
52.
go back to reference Gourdie RG et al (1993) The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci 105(Pt 4):985–991PubMed Gourdie RG et al (1993) The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci 105(Pt 4):985–991PubMed
53.
go back to reference Van Kempen MJ et al (1996) Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 32:886–900PubMed Van Kempen MJ et al (1996) Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 32:886–900PubMed
54.
go back to reference Schroeter A et al (2010) Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5. J Mol Cell Cardiol 49:16–24PubMed Schroeter A et al (2010) Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5. J Mol Cell Cardiol 49:16–24PubMed
55.
go back to reference Rau F et al (2011) Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18:840–845PubMed Rau F et al (2011) Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18:840–845PubMed
56.
go back to reference Welling A et al (1997) Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 81:526–532PubMed Welling A et al (1997) Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 81:526–532PubMed
57.
go back to reference Splawski I et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31PubMed Splawski I et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31PubMed
58.
go back to reference Wang D, Papp AC, Binkley PF, Johnson JA, Sadee W (2006) Highly variable mRNA expression and splicing of L-type voltage-dependent calcium channel alpha subunit 1C in human heart tissues. Pharmacogenet Genomics 16:735–745PubMedPubMedCentral Wang D, Papp AC, Binkley PF, Johnson JA, Sadee W (2006) Highly variable mRNA expression and splicing of L-type voltage-dependent calcium channel alpha subunit 1C in human heart tissues. Pharmacogenet Genomics 16:735–745PubMedPubMedCentral
59.
go back to reference Kumar PP et al (2014) TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome. PLoS Genet 10:e1004247 Kumar PP et al (2014) TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome. PLoS Genet 10:e1004247
60.
go back to reference Ye J et al (2015) hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proc Natl Acad Sci USA 112:E3020–E3029PubMed Ye J et al (2015) hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proc Natl Acad Sci USA 112:E3020–E3029PubMed
61.
go back to reference Kumar PP et al (2014) Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. Elife 3:e02805 Kumar PP et al (2014) Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. Elife 3:e02805
62.
go back to reference Sanguinetti MC et al (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83PubMed Sanguinetti MC et al (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83PubMed
63.
go back to reference Lundquist AL et al (2005) Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks). J Mol Cell Cardiol 38:277–287PubMed Lundquist AL et al (2005) Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks). J Mol Cell Cardiol 38:277–287PubMed
64.
go back to reference Lundby A, Olesen SP (2006) KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochem Biophys Res Commun 346:958–967PubMed Lundby A, Olesen SP (2006) KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochem Biophys Res Commun 346:958–967PubMed
65.
go back to reference Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE (2003) Ionic remodeling of sinoatrial node cells by heart failure. Circulation 108:760–766PubMed Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE (2003) Ionic remodeling of sinoatrial node cells by heart failure. Circulation 108:760–766PubMed
66.
go back to reference Docherty C, Widmer HA, Bunton D, Dolan S (2012) Differential expression of the cardiac slow delayed rectifier complex in the human heart. Proc Physiol Soc 27:307 Docherty C, Widmer HA, Bunton D, Dolan S (2012) Differential expression of the cardiac slow delayed rectifier complex in the human heart. Proc Physiol Soc 27:307
67.
go back to reference Barhanin J et al (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80PubMed Barhanin J et al (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80PubMed
68.
go back to reference Mazhari R, Nuss HB, Armoundas AA, Winslow RL, Marban E (2002) Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest 109:1083–1090PubMedPubMedCentral Mazhari R, Nuss HB, Armoundas AA, Winslow RL, Marban E (2002) Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest 109:1083–1090PubMedPubMedCentral
69.
go back to reference Delpon E et al (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1:209–218PubMedPubMedCentral Delpon E et al (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1:209–218PubMedPubMedCentral
70.
go back to reference Dvir M, Peretz A, Haitin Y, Attali B (2014) Recent molecular insights from mutated IKS channels in cardiac arrhythmia. Curr Opin Pharmacol 15:74–82PubMed Dvir M, Peretz A, Haitin Y, Attali B (2014) Recent molecular insights from mutated IKS channels in cardiac arrhythmia. Curr Opin Pharmacol 15:74–82PubMed
71.
go back to reference Scavone A et al (2013) Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res 113:389–398PubMed Scavone A et al (2013) Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res 113:389–398PubMed
72.
go back to reference Hashem SI, Claycomb WC (2013) Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Mol Cell Biochem 383:161–171PubMed Hashem SI, Claycomb WC (2013) Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Mol Cell Biochem 383:161–171PubMed
73.
go back to reference Zhang J et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–41PubMedPubMedCentral Zhang J et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–41PubMedPubMedCentral
74.
go back to reference Kharche S, Yu J, Lei M, Zhang H (2011) A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases. Am J Physiol Heart Circ Physiol 301:H945–H963PubMedPubMedCentral Kharche S, Yu J, Lei M, Zhang H (2011) A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases. Am J Physiol Heart Circ Physiol 301:H945–H963PubMedPubMedCentral
75.
go back to reference Butters TD et al (2010) Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ Res 107:126–137PubMedPubMedCentral Butters TD et al (2010) Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ Res 107:126–137PubMedPubMedCentral
76.
go back to reference Makielski JC et al (2003) A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels. Circ Res 93:821–828PubMed Makielski JC et al (2003) A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels. Circ Res 93:821–828PubMed
77.
go back to reference Tan BH et al (2005) Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm 2:741–747PubMed Tan BH et al (2005) Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm 2:741–747PubMed
78.
go back to reference Tan BH, Valdivia CR, Song C, Makielski JC (2006) Partial expression defect for the SCN5A missense mutation G1406R depends on splice variant background Q1077 and rescue by mexiletine. Am J Physiol Heart Circ Physiol 291:H1822–H1828PubMed Tan BH, Valdivia CR, Song C, Makielski JC (2006) Partial expression defect for the SCN5A missense mutation G1406R depends on splice variant background Q1077 and rescue by mexiletine. Am J Physiol Heart Circ Physiol 291:H1822–H1828PubMed
79.
go back to reference Wang DW et al (2007) Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 115:368–376PubMed Wang DW et al (2007) Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 115:368–376PubMed
80.
go back to reference Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245PubMed Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245PubMed
81.
go back to reference Dupays L et al (2003) Genomic organization and alternative transcripts of the human Connexin40 gene. Gene 305:79–90PubMed Dupays L et al (2003) Genomic organization and alternative transcripts of the human Connexin40 gene. Gene 305:79–90PubMed
82.
go back to reference Coll M, Seidman JG, Muller CW (2002) Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure 10:343–356PubMed Coll M, Seidman JG, Muller CW (2002) Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure 10:343–356PubMed
83.
go back to reference Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384PubMedPubMedCentral Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384PubMedPubMedCentral
84.
go back to reference Tomonaga T, Levens D (1995) Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. J Biol Chem 270:4875–4881PubMed Tomonaga T, Levens D (1995) Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. J Biol Chem 270:4875–4881PubMed
85.
go back to reference Suswam EA, Li YY, Mahtani H, King PH (2005) Novel DNA-binding properties of the RNA-binding protein TIAR. Nucleic Acids Res 33:4507–4518PubMedPubMedCentral Suswam EA, Li YY, Mahtani H, King PH (2005) Novel DNA-binding properties of the RNA-binding protein TIAR. Nucleic Acids Res 33:4507–4518PubMedPubMedCentral
86.
go back to reference Cassiday LA, Maher LJ 3rd (2002) Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 30:4118–4126PubMedPubMedCentral Cassiday LA, Maher LJ 3rd (2002) Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 30:4118–4126PubMedPubMedCentral
Metadata
Title
Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing
Authors
Brian P. Delisle
Yao Yu
Pavan Puvvula
Allison R. Hall
Chad Huff
Anne M. Moon
Publication date
01-10-2019
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 7/2019
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-019-02166-4

Other articles of this Issue 7/2019

Pediatric Cardiology 7/2019 Go to the issue