Skip to main content
Top
Published in: Pediatric Cardiology 7/2019

01-10-2019 | Erythropoietin | Riley Symposium

Phases and Mechanisms of Embryonic Cardiomyocyte Proliferation and Ventricular Wall Morphogenesis

Authors: Yaacov Barak, Myriam Hemberger, Henry M. Sucov

Published in: Pediatric Cardiology | Issue 7/2019

Login to get access

Abstract

If viewed as a movie, heart morphogenesis appears to unfold in a continuous and seamless manner. At the mechanistic level, however, a series of discreet and separable processes sequentially underlie heart development. This is evident in examining the expansion of the ventricular wall, which accounts for most of the contractile force of each heartbeat. Ventricular wall expansion is driven by cardiomyocyte proliferation coupled with a morphogenetic program that causes wall thickening rather than lengthening. Although most studies of these processes have focused on heart-intrinsic processes, it is increasingly clear that extracardiac events influence or even direct heart morphogenesis. In this review, we specifically consider mechanisms responsible for coordinating cardiomyocyte proliferation and ventricular wall expansion in mammalian development, relying primarily on studies from mouse development where a wealth of molecular and genetic data have been accumulated.
Literature
1.
go back to reference Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18:210–216PubMed Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18:210–216PubMed
2.
go back to reference Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, Bourke LM, Pitulescu ME, Chen H, de la Pompa JL, Shou W, Adams RH, Harten SK, Tzahor E, Zhou B, Harvey RP (2018) Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557:439–445PubMed Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, Bourke LM, Pitulescu ME, Chen H, de la Pompa JL, Shou W, Adams RH, Harten SK, Tzahor E, Zhou B, Harvey RP (2018) Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557:439–445PubMed
3.
4.
go back to reference Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746PubMed Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746PubMed
5.
6.
go back to reference Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Yan Y, Yang X, Zhong TP, Pu WT, Zhou B (2014) Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345:90–94PubMedPubMedCentral Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Yan Y, Yang X, Zhong TP, Pu WT, Zhou B (2014) Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345:90–94PubMedPubMedCentral
7.
go back to reference Manner J (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol (Berl) 187:281–289 Manner J (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol (Berl) 187:281–289
8.
go back to reference Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882PubMedPubMedCentral Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882PubMedPubMedCentral
9.
go back to reference Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE (2000) Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 87:969–971PubMed Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE (2000) Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 87:969–971PubMed
10.
go back to reference Rossant J (1996) Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 78:349–353PubMed Rossant J (1996) Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 78:349–353PubMed
11.
go back to reference Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491PubMed Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491PubMed
12.
go back to reference Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, Kaldis P (2006) Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10:563–573PubMed Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, Kaldis P (2006) Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10:563–573PubMed
13.
go back to reference Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A, Katsuki M (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15:1151–1159PubMed Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A, Katsuki M (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15:1151–1159PubMed
14.
go back to reference Moens CB, Stanton BR, Parada LF, Rossant J (1993) Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 119:485–499PubMed Moens CB, Stanton BR, Parada LF, Rossant J (1993) Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 119:485–499PubMed
15.
go back to reference Chen T, Chang TC, Kang JO, Choudhary B, Makita T, Tran CM, Burch JB, Eid H, Sucov HM (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207PubMed Chen T, Chang TC, Kang JO, Choudhary B, Makita T, Tran CM, Burch JB, Eid H, Sucov HM (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207PubMed
16.
go back to reference Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, Bruning JC, Pashmforoush M, Sucov HM (2011) IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138:1795–1805PubMedPubMedCentral Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, Bruning JC, Pashmforoush M, Sucov HM (2011) IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138:1795–1805PubMedPubMedCentral
17.
go back to reference Wang K, Shen H, Gan P, Cavallero S, Kumar SR, Lien CL, Sucov HM (2019) Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev Biol 19:5PubMedPubMedCentral Wang K, Shen H, Gan P, Cavallero S, Kumar SR, Lien CL, Sucov HM (2019) Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev Biol 19:5PubMedPubMedCentral
18.
go back to reference Shen H, Cavallero S, Estrada KD, Sandovici I, Kumar SR, Makita T, Lien CL, Constancia M, Sucov HM (2015) Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res 105:271–278PubMedPubMedCentral Shen H, Cavallero S, Estrada KD, Sandovici I, Kumar SR, Makita T, Lien CL, Constancia M, Sucov HM (2015) Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res 105:271–278PubMedPubMedCentral
19.
go back to reference Caron KM, Smithies O (2001) Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci USA 98:615–619PubMed Caron KM, Smithies O (2001) Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci USA 98:615–619PubMed
20.
go back to reference Brade T, Kumar S, Cunningham TJ, Chatzi C, Zhao X, Cavallero S, Li P, Sucov HM, Ruiz-Lozano P, Duester G (2011) Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development 138:139–148PubMedPubMedCentral Brade T, Kumar S, Cunningham TJ, Chatzi C, Zhao X, Cavallero S, Li P, Sucov HM, Ruiz-Lozano P, Duester G (2011) Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development 138:139–148PubMedPubMedCentral
21.
go back to reference Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605PubMed Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605PubMed
22.
go back to reference Makita T, Hernandez-Hoyos G, Chen TH, Wu H, Rothenberg EV, Sucov HM (2001) A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4. Genes Dev 15:889–901PubMedPubMedCentral Makita T, Hernandez-Hoyos G, Chen TH, Wu H, Rothenberg EV, Sucov HM (2001) A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4. Genes Dev 15:889–901PubMedPubMedCentral
23.
go back to reference Makita T, Duncan SA, Sucov HM (2005) Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver erythropoietin expression and erythropoietic differentiation. Dev Biol 280:59–72PubMed Makita T, Duncan SA, Sucov HM (2005) Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver erythropoietin expression and erythropoietic differentiation. Dev Biol 280:59–72PubMed
24.
go back to reference Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57PubMed Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57PubMed
25.
go back to reference Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM (2015) Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci USA 112:2070–2075PubMed Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM (2015) Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci USA 112:2070–2075PubMed
26.
go back to reference Cavallero S, Shen H, Yi C, Lien CL, Kumar SR, Sucov HM (2015) CXCL12 Signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev Cell 33:469–477PubMedPubMedCentral Cavallero S, Shen H, Yi C, Lien CL, Kumar SR, Sucov HM (2015) CXCL12 Signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev Cell 33:469–477PubMedPubMedCentral
27.
go back to reference Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244PubMedPubMedCentral Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244PubMedPubMedCentral
28.
go back to reference Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol 51:186–273PubMed Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol 51:186–273PubMed
29.
go back to reference Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553PubMedPubMedCentral Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553PubMedPubMedCentral
30.
go back to reference Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168PubMed Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168PubMed
31.
go back to reference Jones HN, Olbrych SK, Smith KL, Cnota JF, Habli M, Ramos-Gonzales O, Owens KJ, Hinton AC, Polzin WJ, Muglia LJ, Hinton RB (2015) Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta 36:1078–1086PubMedPubMedCentral Jones HN, Olbrych SK, Smith KL, Cnota JF, Habli M, Ramos-Gonzales O, Owens KJ, Hinton AC, Polzin WJ, Muglia LJ, Hinton RB (2015) Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta 36:1078–1086PubMedPubMedCentral
32.
go back to reference Matthiesen NB, Henriksen TB, Agergaard P, Gaynor JW, Bach CC, Hjortdal VE, Ostergaard JR (2016) Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants. Circulation 134:1546–1556PubMed Matthiesen NB, Henriksen TB, Agergaard P, Gaynor JW, Bach CC, Hjortdal VE, Ostergaard JR (2016) Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants. Circulation 134:1546–1556PubMed
33.
go back to reference Rychik J, Goff D, McKay E, Mott A, Tian Z, Licht DJ, Gaynor JW (2018) Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr Cardiol 39:1165–1171PubMedPubMedCentral Rychik J, Goff D, McKay E, Mott A, Tian Z, Licht DJ, Gaynor JW (2018) Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr Cardiol 39:1165–1171PubMedPubMedCentral
34.
go back to reference Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555:463–468PubMedPubMedCentral Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555:463–468PubMedPubMedCentral
35.
go back to reference Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503PubMed Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503PubMed
36.
go back to reference Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560PubMed Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560PubMed
37.
go back to reference Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595PubMed Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595PubMed
38.
go back to reference Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116PubMed Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116PubMed
39.
go back to reference Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003) Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8:847–856PubMed Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003) Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8:847–856PubMed
40.
go back to reference Dubois NC, Adolphe C, Ehninger A, Wang RA, Robertson EJ, Trumpp A (2008) Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development 135:2455–2465PubMed Dubois NC, Adolphe C, Ehninger A, Wang RA, Robertson EJ, Trumpp A (2008) Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development 135:2455–2465PubMed
41.
go back to reference Maruyama EO, Lin H, Chiu SY, Yu HM, Porter GA, Hsu W (2016) Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Sci Rep 6:20999PubMedPubMedCentral Maruyama EO, Lin H, Chiu SY, Yu HM, Porter GA, Hsu W (2016) Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Sci Rep 6:20999PubMedPubMedCentral
42.
go back to reference Langford MB, Outhwaite JE, Hughes M, Natale DRC, Simmons DG (2018) Deletion of the Syncytin A receptor Ly6e impairs syncytiotrophoblast fusion and placental morphogenesis causing embryonic lethality in mice. Sci Rep 8:3961PubMedPubMedCentral Langford MB, Outhwaite JE, Hughes M, Natale DRC, Simmons DG (2018) Deletion of the Syncytin A receptor Ly6e impairs syncytiotrophoblast fusion and placental morphogenesis causing embryonic lethality in mice. Sci Rep 8:3961PubMedPubMedCentral
43.
go back to reference Hayashi S, Lewis P, Pevny L, McMahon AP (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Suppl 1):S97–S101PubMed Hayashi S, Lewis P, Pevny L, McMahon AP (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Suppl 1):S97–S101PubMed
44.
go back to reference Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018PubMed Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018PubMed
45.
go back to reference Tran CM, Sucov HM (1998) The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis. Development 125:1951–1956PubMed Tran CM, Sucov HM (1998) The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis. Development 125:1951–1956PubMed
46.
go back to reference Barak Y, Liao D, He W, Ong ES, Nelson MC, Olefsky JM, Boland R, Evans RM (2002) Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 99:303–308PubMed Barak Y, Liao D, He W, Ong ES, Nelson MC, Olefsky JM, Boland R, Evans RM (2002) Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 99:303–308PubMed
47.
go back to reference Sapin V, Dolle P, Hindelang C, Kastner P, Chambon P (1997) Defects of the chorioallantoic placenta in mouse RXRalpha null fetuses. Dev Biol 191:29–41PubMed Sapin V, Dolle P, Hindelang C, Kastner P, Chambon P (1997) Defects of the chorioallantoic placenta in mouse RXRalpha null fetuses. Dev Biol 191:29–41PubMed
48.
go back to reference Wendling O, Chambon P, Mark M (1999) Retinoid X receptors are essential for early mouse development and placentogenesis. Proc Natl Acad Sci USA 96:547–551PubMed Wendling O, Chambon P, Mark M (1999) Retinoid X receptors are essential for early mouse development and placentogenesis. Proc Natl Acad Sci USA 96:547–551PubMed
49.
go back to reference Thornburg KL, Louey S, Giraud GD (2008) The role of growth in heart development. Nestle Nutr Workshop Ser Pediatr Program 61:39–51PubMed Thornburg KL, Louey S, Giraud GD (2008) The role of growth in heart development. Nestle Nutr Workshop Ser Pediatr Program 61:39–51PubMed
50.
go back to reference Yuan XJ, Tod ML, Rubin LJ, Blaustein MP (1995) Hypoxic and metabolic regulation of voltage-gated K+ channels in rat pulmonary artery smooth muscle cells. Exp Physiol 80:803–813PubMed Yuan XJ, Tod ML, Rubin LJ, Blaustein MP (1995) Hypoxic and metabolic regulation of voltage-gated K+ channels in rat pulmonary artery smooth muscle cells. Exp Physiol 80:803–813PubMed
51.
go back to reference Costa MA (2016) The endocrine function of human placenta: an overview. Reprod Biomed Online 32:14–43PubMed Costa MA (2016) The endocrine function of human placenta: an overview. Reprod Biomed Online 32:14–43PubMed
52.
go back to reference Parikh A, Wu J, Blanton RM, Tzanakakis ES (2015) Signaling pathways and gene regulatory networks in cardiomyocyte differentiation. Tissue Eng B 21:377–392 Parikh A, Wu J, Blanton RM, Tzanakakis ES (2015) Signaling pathways and gene regulatory networks in cardiomyocyte differentiation. Tissue Eng B 21:377–392
53.
go back to reference Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942PubMed Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942PubMed
54.
go back to reference Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080PubMedPubMedCentral Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080PubMedPubMedCentral
56.
go back to reference Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, Tee GZ, Pua CJ, Pena EM, Cheng RB, Chen WC, Abdurrachim D, Lalic J, Tan RS, Lee TH, Zhang J, Cook SA (2018) Early regenerative capacity in the porcine heart. Circulation 138:2798–2808PubMed Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, Tee GZ, Pua CJ, Pena EM, Cheng RB, Chen WC, Abdurrachim D, Lalic J, Tan RS, Lee TH, Zhang J, Cook SA (2018) Early regenerative capacity in the porcine heart. Circulation 138:2798–2808PubMed
57.
go back to reference Zhu W, Zhang E, Zhao M, Chong Z, Fan C, Tang Y, Hunter JD, Borovjagin AV, Walcott GP, Chen JY, Qin G, Zhang J (2018) Regenerative potential of neonatal porcine hearts. Circulation 138:2809–2816PubMed Zhu W, Zhang E, Zhao M, Chong Z, Fan C, Tang Y, Hunter JD, Borovjagin AV, Walcott GP, Chen JY, Qin G, Zhang J (2018) Regenerative potential of neonatal porcine hearts. Circulation 138:2809–2816PubMed
58.
go back to reference Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221PubMed Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221PubMed
59.
go back to reference Westaby S, Archer N, Myerson SG (2008) Cardiac development after salvage partial left ventriculectomy in an infant with anomalous left coronary artery from the pulmonary artery. J Thorac Cardiovasc Surg 136:784–785PubMed Westaby S, Archer N, Myerson SG (2008) Cardiac development after salvage partial left ventriculectomy in an infant with anomalous left coronary artery from the pulmonary artery. J Thorac Cardiovasc Surg 136:784–785PubMed
Metadata
Title
Phases and Mechanisms of Embryonic Cardiomyocyte Proliferation and Ventricular Wall Morphogenesis
Authors
Yaacov Barak
Myriam Hemberger
Henry M. Sucov
Publication date
01-10-2019
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 7/2019
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-019-02164-6

Other articles of this Issue 7/2019

Pediatric Cardiology 7/2019 Go to the issue