Skip to main content
Top
Published in: Pediatric Cardiology 7/2019

Open Access 01-10-2019 | Heart Failure | Riley Symposium

Transcriptional and Epigenetic Regulation of Cardiac Electrophysiology

Authors: Jesus Jimenez, Stacey L. Rentschler

Published in: Pediatric Cardiology | Issue 7/2019

Login to get access

Abstract

Spatiotemporal gene expression during cardiac development is a highly regulated process. Activation of key signaling pathways involved in electrophysiological programming, such as Notch and Wnt signaling, occurs in early cardiovascular development and these pathways are reactivated during pathologic remodeling. Direct targets of these signaling pathways have also been associated with inherited arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. In addition, evidence is emerging from animal models that reactivation of Notch and Wnt signaling during cardiac pathology may predispose to acquired arrhythmias, underscoring the importance of elucidating the transcriptional and epigenetic effects on cardiac gene regulation. Here, we highlight specific examples where gene expression dictates electrophysiological properties in both normal and diseased hearts.
Literature
1.
go back to reference Carlson BM (2014) Human Embryology and Developmental Biology. Elsevier, Philadelphia Carlson BM (2014) Human Embryology and Developmental Biology. Elsevier, Philadelphia
2.
go back to reference Chang CP, Bruneau BG (2012) Epigenetics and cardiovascular development. Annu Rev Physiol 74:41–68CrossRefPubMed Chang CP, Bruneau BG (2012) Epigenetics and cardiovascular development. Annu Rev Physiol 74:41–68CrossRefPubMed
3.
go back to reference Preissl S, Schwaderer M, Raulf A, Hesse M, Gruning BA, Kobele C, Backofen R, Fleischmann BK, Hein L, Gilsbach R (2015) Deciphering the epigenetic code of cardiac myocyte transcription. Circ Res 117:413–423CrossRefPubMed Preissl S, Schwaderer M, Raulf A, Hesse M, Gruning BA, Kobele C, Backofen R, Fleischmann BK, Hein L, Gilsbach R (2015) Deciphering the epigenetic code of cardiac myocyte transcription. Circ Res 117:413–423CrossRefPubMed
4.
5.
go back to reference Nuhrenberg T, Gilsbach R, Preissl S, Schnick T, Hein L (2014) Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356:585–600CrossRefPubMed Nuhrenberg T, Gilsbach R, Preissl S, Schnick T, Hein L (2014) Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356:585–600CrossRefPubMed
6.
go back to reference Sivagangabalan G, Nazzari H, Bignolais O, Maguy A, Naud P, Farid T, Masse S, Gaborit N, Varro A, Nair K, Backx P, Vigmond E, Nattel S, Demolombe S, Nanthakumar K (2014) Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts. PLoS ONE 9:e82179CrossRefPubMedPubMedCentral Sivagangabalan G, Nazzari H, Bignolais O, Maguy A, Naud P, Farid T, Masse S, Gaborit N, Varro A, Nair K, Backx P, Vigmond E, Nattel S, Demolombe S, Nanthakumar K (2014) Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts. PLoS ONE 9:e82179CrossRefPubMedPubMedCentral
7.
go back to reference Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871CrossRefPubMed Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871CrossRefPubMed
8.
go back to reference Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A (2017) The "Metabolic Memory" theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients 9:E437CrossRefPubMed Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A (2017) The "Metabolic Memory" theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients 9:E437CrossRefPubMed
9.
go back to reference Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236CrossRefPubMedPubMedCentral Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236CrossRefPubMedPubMedCentral
10.
go back to reference Nguyen TP, Qu Z, Weiss JN (2014) Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J Mol Cell Cardiol 70:83–91CrossRefPubMed Nguyen TP, Qu Z, Weiss JN (2014) Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J Mol Cell Cardiol 70:83–91CrossRefPubMed
11.
go back to reference Khandekar A, Springer S, Wang W, Hicks S, Weinheimer C, Diaz-Trelles R, Nerbonne JM, Rentschler S (2016) Notch-mediated epigenetic regulation of voltage-gated potassium currents. Circ Res 119:1324–1338CrossRefPubMedPubMedCentral Khandekar A, Springer S, Wang W, Hicks S, Weinheimer C, Diaz-Trelles R, Nerbonne JM, Rentschler S (2016) Notch-mediated epigenetic regulation of voltage-gated potassium currents. Circ Res 119:1324–1338CrossRefPubMedPubMedCentral
12.
go back to reference Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S (2017) Transient notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice. Circ Res 121:549–563CrossRefPubMedPubMedCentral Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S (2017) Transient notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice. Circ Res 121:549–563CrossRefPubMedPubMedCentral
13.
go back to reference Weinheimer CJ, Kovacs A, Evans S, Matkovich SJ, Barger PM, Mann DL (2018) Load-dependent changes in left ventricular structure and function in a pathophysiologically relevant murine model of reversible heart failure. Circ Heart Fail 11:e004351CrossRefPubMedPubMedCentral Weinheimer CJ, Kovacs A, Evans S, Matkovich SJ, Barger PM, Mann DL (2018) Load-dependent changes in left ventricular structure and function in a pathophysiologically relevant murine model of reversible heart failure. Circ Heart Fail 11:e004351CrossRefPubMedPubMedCentral
14.
go back to reference Molina CE, Heijman J, Dobrev D (2016) Differences in left versus right ventricular electrophysiological properties in cardiac dysfunction and arrhythmogenesis. Arrhythm Electrophysiol Rev 5:14–19CrossRefPubMedPubMedCentral Molina CE, Heijman J, Dobrev D (2016) Differences in left versus right ventricular electrophysiological properties in cardiac dysfunction and arrhythmogenesis. Arrhythm Electrophysiol Rev 5:14–19CrossRefPubMedPubMedCentral
15.
go back to reference Martin CA, Siedlecka U, Kemmerich K, Lawrence J, Cartledge J, Guzadhur L, Brice N, Grace AA, Schwiening C, Terracciano CM, Huang CL (2012) Reduced Na(+) and higher K(+) channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/- mice. Open Biol 2:120072CrossRefPubMedPubMedCentral Martin CA, Siedlecka U, Kemmerich K, Lawrence J, Cartledge J, Guzadhur L, Brice N, Grace AA, Schwiening C, Terracciano CM, Huang CL (2012) Reduced Na(+) and higher K(+) channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/- mice. Open Biol 2:120072CrossRefPubMedPubMedCentral
16.
go back to reference Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, Guicheney P, Fressart V, Leenhardt A, Antzelevitch C, Bartkowiak S, Borggrefe M, Schimpf R, Schulze-Bahr E, Zumhagen S, Behr ER, Bastiaenen R, Tfelt-Hansen J, Olesen MS, Kaab S, Beckmann BM, Weeke P, Watanabe H, Endo N, Minamino T, Horie M, Ohno S, Hasegawa K, Makita N, Nogami A, Shimizu W, Aiba T, Froguel P, Balkau B, Lantieri O, Torchio M, Wiese C, Weber D, Wolswinkel R, Coronel R, Boukens BJ, Bezieau S, Charpentier E, Chatel S, Despres A, Gros F, Kyndt F, Lecointe S, Lindenbaum P, Portero V, Violleau J, Gessler M, Tan HL, Roden DM, Christoffels VM, Le Marec H, Wilde AA, Probst V, Schott JJ, Dina C, Redon R (2013) Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 45:1044–1049CrossRefPubMedPubMedCentral Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, Guicheney P, Fressart V, Leenhardt A, Antzelevitch C, Bartkowiak S, Borggrefe M, Schimpf R, Schulze-Bahr E, Zumhagen S, Behr ER, Bastiaenen R, Tfelt-Hansen J, Olesen MS, Kaab S, Beckmann BM, Weeke P, Watanabe H, Endo N, Minamino T, Horie M, Ohno S, Hasegawa K, Makita N, Nogami A, Shimizu W, Aiba T, Froguel P, Balkau B, Lantieri O, Torchio M, Wiese C, Weber D, Wolswinkel R, Coronel R, Boukens BJ, Bezieau S, Charpentier E, Chatel S, Despres A, Gros F, Kyndt F, Lecointe S, Lindenbaum P, Portero V, Violleau J, Gessler M, Tan HL, Roden DM, Christoffels VM, Le Marec H, Wilde AA, Probst V, Schott JJ, Dina C, Redon R (2013) Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 45:1044–1049CrossRefPubMedPubMedCentral
17.
go back to reference Veerman CC, Podliesna S, Tadros R, Lodder EM, Mengarelli I, de Jonge B, Beekman L, Barc J, Wilders R, Wilde AAM, Boukens BJ, Coronel R, Verkerk AO, Remme CA, Bezzina CR (2017) The brugada syndrome susceptibility gene HEY2 modulates cardiac transmural ion channel patterning and electrical heterogeneity. Circ Res 121:537–548CrossRefPubMed Veerman CC, Podliesna S, Tadros R, Lodder EM, Mengarelli I, de Jonge B, Beekman L, Barc J, Wilders R, Wilde AAM, Boukens BJ, Coronel R, Verkerk AO, Remme CA, Bezzina CR (2017) The brugada syndrome susceptibility gene HEY2 modulates cardiac transmural ion channel patterning and electrical heterogeneity. Circ Res 121:537–548CrossRefPubMed
18.
go back to reference Mathiyalagan P, Chang L, Du XJ, El-Osta A (2010) Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 9:612–617CrossRefPubMed Mathiyalagan P, Chang L, Du XJ, El-Osta A (2010) Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 9:612–617CrossRefPubMed
19.
go back to reference Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370CrossRefPubMedPubMedCentral Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370CrossRefPubMedPubMedCentral
20.
go back to reference Cao ZP, Xue JJ, Zhang Y, Tian MH, Xiao Y, Jia YQ, Zhu BL (2017) Differential expression of B-type natriuretic peptide between left and right ventricles, with particular regard to sudden cardiac death. Mol Med Rep 16:4763–4769CrossRefPubMedPubMedCentral Cao ZP, Xue JJ, Zhang Y, Tian MH, Xiao Y, Jia YQ, Zhu BL (2017) Differential expression of B-type natriuretic peptide between left and right ventricles, with particular regard to sudden cardiac death. Mol Med Rep 16:4763–4769CrossRefPubMedPubMedCentral
21.
go back to reference He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, Visel A, Pennacchio LA, Pu WT (2014) Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun 5:4907CrossRefPubMedPubMedCentral He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, Visel A, Pennacchio LA, Pu WT (2014) Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun 5:4907CrossRefPubMedPubMedCentral
22.
go back to reference Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM, Morley GE, Patel VV, Epstein JA (2011) Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 121:525–533CrossRefPubMedPubMedCentral Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM, Morley GE, Patel VV, Epstein JA (2011) Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 121:525–533CrossRefPubMedPubMedCentral
23.
go back to reference Li G, Khandekar A, Yin T, Hicks SC, Guo Q, Takahashi K, Lipovsky CE, Brumback BD, Rao PK, Weinheimer CJ, Rentschler SL (2018) Differential Wnt-mediated programming and arrhythmogenesis in right versus left ventricles. J Mol Cell Cardiol 123:92–107CrossRefPubMedPubMedCentral Li G, Khandekar A, Yin T, Hicks SC, Guo Q, Takahashi K, Lipovsky CE, Brumback BD, Rao PK, Weinheimer CJ, Rentschler SL (2018) Differential Wnt-mediated programming and arrhythmogenesis in right versus left ventricles. J Mol Cell Cardiol 123:92–107CrossRefPubMedPubMedCentral
24.
go back to reference Gillers BS, Chiplunkar A, Aly H, Valenta T, Basler K, Christoffels VM, Efimov IR, Boukens BJ, Rentschler S (2015) Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties. Circ Res 116:398–406CrossRefPubMed Gillers BS, Chiplunkar A, Aly H, Valenta T, Basler K, Christoffels VM, Efimov IR, Boukens BJ, Rentschler S (2015) Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties. Circ Res 116:398–406CrossRefPubMed
26.
go back to reference Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG, DiSilvestre D, Tunin RS, Kass DA, Tomaselli GF (2007) Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293:H1223–1230CrossRefPubMed Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG, DiSilvestre D, Tunin RS, Kass DA, Tomaselli GF (2007) Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293:H1223–1230CrossRefPubMed
27.
go back to reference An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556CrossRefPubMed An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556CrossRefPubMed
28.
go back to reference Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A, Nattel S (2004) Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol 561:735–748CrossRefPubMedPubMedCentral Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A, Nattel S (2004) Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol 561:735–748CrossRefPubMedPubMedCentral
29.
go back to reference Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 48:12–25CrossRefPubMed Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 48:12–25CrossRefPubMed
30.
go back to reference Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, Dressler GR (2011) Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 121:2641–2650CrossRefPubMedPubMedCentral Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, Dressler GR (2011) Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 121:2641–2650CrossRefPubMedPubMedCentral
31.
go back to reference Nassal DM, Wan X, Liu H, Maleski D, Ramirez-Navarro A, Moravec CS, Ficker E, Laurita KR, Deschenes I (2017) KChIP2 is a core transcriptional regulator of cardiac excitability. Elife 6:e17304CrossRefPubMedPubMedCentral Nassal DM, Wan X, Liu H, Maleski D, Ramirez-Navarro A, Moravec CS, Ficker E, Laurita KR, Deschenes I (2017) KChIP2 is a core transcriptional regulator of cardiac excitability. Elife 6:e17304CrossRefPubMedPubMedCentral
32.
go back to reference Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, Balderas E, Pellegrini M, Shih TT, Soehalim E, Liem D, Ping P, Galjart NJ, Ren S, Wang Y, Ren B, Vondriska TM (2017) High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 136:1613–1625CrossRefPubMedPubMedCentral Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, Balderas E, Pellegrini M, Shih TT, Soehalim E, Liem D, Ping P, Galjart NJ, Ren S, Wang Y, Ren B, Vondriska TM (2017) High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 136:1613–1625CrossRefPubMedPubMedCentral
33.
go back to reference Monte E, Rosa-Garrido M, Karbassi E, Chen H, Lopez R, Rau CD, Wang J, Nelson SF, Wu Y, Stefani E, Lusis AJ, Wang Y, Kurdistani SK, Franklin S, Vondriska TM (2016) Reciprocal regulation of the cardiac epigenome by chromatin structural proteins Hmgb and Ctcf: Implic Transcript l Regul. J Biol Chem 291:15428–15446CrossRefPubMedPubMedCentral Monte E, Rosa-Garrido M, Karbassi E, Chen H, Lopez R, Rau CD, Wang J, Nelson SF, Wu Y, Stefani E, Lusis AJ, Wang Y, Kurdistani SK, Franklin S, Vondriska TM (2016) Reciprocal regulation of the cardiac epigenome by chromatin structural proteins Hmgb and Ctcf: Implic Transcript l Regul. J Biol Chem 291:15428–15446CrossRefPubMedPubMedCentral
Metadata
Title
Transcriptional and Epigenetic Regulation of Cardiac Electrophysiology
Authors
Jesus Jimenez
Stacey L. Rentschler
Publication date
01-10-2019
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 7/2019
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-019-02160-w

Other articles of this Issue 7/2019

Pediatric Cardiology 7/2019 Go to the issue