Skip to main content
Top
Published in: Pediatric Cardiology 4/2017

Open Access 01-04-2017 | Original Article

Decreased Diastolic Ventricular Kinetic Energy in Young Patients with Fontan Circulation Demonstrated by Four-Dimensional Cardiac Magnetic Resonance Imaging

Authors: Pia Sjöberg, Einar Heiberg, Pär Wingren, Jens Ramgren Johansson, Torsten Malm, Håkan Arheden, Petru Liuba, Marcus Carlsson

Published in: Pediatric Cardiology | Issue 4/2017

Login to get access

Abstract

Four-dimensional (4D) flow magnetic resonance imaging (MRI) enables quantification of kinetic energy (KE) in intraventricular blood flow. This provides a novel way to understand the cardiovascular physiology of the Fontan circulation. In this study, we aimed to quantify the KE in functional single ventricles. 4D flow MRI was acquired in eleven patients with Fontan circulation (median age 12 years, range 3–29) and eight healthy volunteers (median age 26 years, range 23–36). Follow-up MRI after surgical or percutaneous intervention was performed in 3 patients. Intraventricular KE was calculated throughout the cardiac cycle and indexed to stroke volume (SV). The systolic/diastolic ratio of KE in Fontan patients was similar to the ratio of the controls’ left ventricle (LV) or right ventricle (RV) depending on the patients’ ventricular morphology (Cohen´s κ = 1.0). Peak systolic KE/SV did not differ in patients compared to the LV in controls (0.016 ± 0.006 mJ/ml vs 0.020 ± 0.004 mJ/ml, p = 0.09). Peak diastolic KE/SV in Fontan patients was lower than in the LV of the control group (0.028 ± 0.010 mJ/ml vs 0.057 ± 0.011 mJ/ml, p < 0.0001). The KE during diastole showed a plateau in patients with aortopulmonary collaterals. This is to our knowledge the first study that quantifies the intraventricular KE of Fontan patients. KE is dependent on the morphology of the ventricle, and diastolic KE indexed to SV in patients is decreased compared to controls. The lower KE in Fontan patients may be a result of impaired ventricular filling.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kurishima C, Saiki H, Masutani S, Senzaki H (2015) Tailored therapy for aggressive dilatation of systemic veins and arteries may result in improved long-term Fontan circulation. J Thorac Cardiovasc Surg 150:1367–1370CrossRefPubMed Kurishima C, Saiki H, Masutani S, Senzaki H (2015) Tailored therapy for aggressive dilatation of systemic veins and arteries may result in improved long-term Fontan circulation. J Thorac Cardiovasc Surg 150:1367–1370CrossRefPubMed
4.
5.
go back to reference Khairy P, Fernandes SM, Mayer JE et al (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92CrossRefPubMed Khairy P, Fernandes SM, Mayer JE et al (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92CrossRefPubMed
6.
go back to reference Dabal RJ, Kirklin JK, Kukreja M et al (2014) The modern Fontan operation shows no increase in mortality out to 20 years: a new paradigm. J Thorac Cardiovasc Surg 148:2517–2524CrossRefPubMed Dabal RJ, Kirklin JK, Kukreja M et al (2014) The modern Fontan operation shows no increase in mortality out to 20 years: a new paradigm. J Thorac Cardiovasc Surg 148:2517–2524CrossRefPubMed
7.
go back to reference Van Dorn CS, Menon SC, Johnson JT et al (2015) Lifetime cardiac reinterventions following the Fontan procedure. Pediatr Cardiol 36:329–334CrossRefPubMed Van Dorn CS, Menon SC, Johnson JT et al (2015) Lifetime cardiac reinterventions following the Fontan procedure. Pediatr Cardiol 36:329–334CrossRefPubMed
8.
go back to reference d’Udekem Y, Iyengar AJ, Cochrane AD, et al (2007) The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation 116:I-157-I-164. d’Udekem Y, Iyengar AJ, Cochrane AD, et al (2007) The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation 116:I-157-I-164.
9.
go back to reference Kilner PJ, Yang GZ, Wilkes AJ et al (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761CrossRefPubMed Kilner PJ, Yang GZ, Wilkes AJ et al (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761CrossRefPubMed
10.
go back to reference Töger J, Kanski M, Carlsson M et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40:1–11CrossRef Töger J, Kanski M, Carlsson M et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40:1–11CrossRef
11.
12.
go back to reference She HL, Roest AAW, Calkoen EE et al (2016) Comparative Evaluation of Flow Quantification across the Atrioventricular Valve in Patients with Functional Univentricular Heart after Fontan’s Surgery and Healthy Controls: Measurement by 4D Flow Magnetic Resonance Imaging and Streamline Visualization. Congenit Heart Dis She HL, Roest AAW, Calkoen EE et al (2016) Comparative Evaluation of Flow Quantification across the Atrioventricular Valve in Patients with Functional Univentricular Heart after Fontan’s Surgery and Healthy Controls: Measurement by 4D Flow Magnetic Resonance Imaging and Streamline Visualization. Congenit Heart Dis
13.
go back to reference Bächler P, Valverde I, Pinochet N et al (2013) Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 267:67–75CrossRefPubMed Bächler P, Valverde I, Pinochet N et al (2013) Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 267:67–75CrossRefPubMed
14.
go back to reference Arvidsson PM, Töger J, Heiberg E et al (2013) Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J Appl Physiol 114:1472–1481CrossRefPubMed Arvidsson PM, Töger J, Heiberg E et al (2013) Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J Appl Physiol 114:1472–1481CrossRefPubMed
15.
go back to reference Carlsson M, Heiberg E, Toger J, Arheden H (2012) Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 302:H893–H900CrossRefPubMed Carlsson M, Heiberg E, Toger J, Arheden H (2012) Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 302:H893–H900CrossRefPubMed
16.
go back to reference Heiberg E, Sjögren J, Ugander M et al (2010) Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging 10:1CrossRefPubMedPubMedCentral Heiberg E, Sjögren J, Ugander M et al (2010) Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging 10:1CrossRefPubMedPubMedCentral
17.
go back to reference Eriksson J, Dyverfeldt P, Engvall J et al (2011) Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol 300:H2135–H2141CrossRefPubMed Eriksson J, Dyverfeldt P, Engvall J et al (2011) Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol 300:H2135–H2141CrossRefPubMed
18.
go back to reference Fredriksson AG, Zajac J, Eriksson J et al (2011) 4-D blood flow in the human right ventricle. Am J Physiol Heart Circ Physiol 301:H2344–H2350CrossRefPubMed Fredriksson AG, Zajac J, Eriksson J et al (2011) 4-D blood flow in the human right ventricle. Am J Physiol Heart Circ Physiol 301:H2344–H2350CrossRefPubMed
19.
go back to reference Steding-Ehrenborg K, Arvidsson PM, Töger J, et al (2015) Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am J Physiol Heart Circ Physiol 310:113–122CrossRef Steding-Ehrenborg K, Arvidsson PM, Töger J, et al (2015) Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am J Physiol Heart Circ Physiol 310:113–122CrossRef
20.
go back to reference Zajac J, Eriksson J, Dyverfeldt P et al (2015) Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging 41:1021–1029CrossRefPubMed Zajac J, Eriksson J, Dyverfeldt P et al (2015) Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging 41:1021–1029CrossRefPubMed
21.
go back to reference Eriksson J, Bolger AF, Ebbers T, Carlhäll C-JJ (2013) Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 14:417–424CrossRefPubMed Eriksson J, Bolger AF, Ebbers T, Carlhäll C-JJ (2013) Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 14:417–424CrossRefPubMed
22.
go back to reference Al-Wakeel N, Fernandes JF, Amiri A et al (2015) Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. J Magn Reson Imaging 42:1705–1712CrossRefPubMed Al-Wakeel N, Fernandes JF, Amiri A et al (2015) Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. J Magn Reson Imaging 42:1705–1712CrossRefPubMed
23.
go back to reference Jeong D, Anagnostopoulos PV, Roldan-Alzate A et al (2014) Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg 149:1339–1347CrossRefPubMedPubMedCentral Jeong D, Anagnostopoulos PV, Roldan-Alzate A et al (2014) Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg 149:1339–1347CrossRefPubMedPubMedCentral
24.
go back to reference Töger J, Bidhult S, Revstedt J et al (2016) Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-Induced fluorescence. Magn Reson Med 75:1064–1075CrossRefPubMed Töger J, Bidhult S, Revstedt J et al (2016) Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-Induced fluorescence. Magn Reson Med 75:1064–1075CrossRefPubMed
25.
go back to reference Carlsson M, Töger J, Kanski M et al (2011) Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 13:55CrossRefPubMedPubMedCentral Carlsson M, Töger J, Kanski M et al (2011) Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 13:55CrossRefPubMedPubMedCentral
26.
go back to reference Kanski M, Töger J, Steding-Ehrenborg K et al (2015) Whole-heart four-dimensional flow can be acquired with preserved quality without respiratory gating, facilitating clinical use: a head-to-head comparison. BMC Med Imaging 15:20CrossRefPubMedPubMedCentral Kanski M, Töger J, Steding-Ehrenborg K et al (2015) Whole-heart four-dimensional flow can be acquired with preserved quality without respiratory gating, facilitating clinical use: a head-to-head comparison. BMC Med Imaging 15:20CrossRefPubMedPubMedCentral
27.
go back to reference Carlsson M, Andersson R, Bloch KM et al (2012) Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson 14:51CrossRefPubMedPubMedCentral Carlsson M, Andersson R, Bloch KM et al (2012) Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson 14:51CrossRefPubMedPubMedCentral
28.
go back to reference Trudnowski RJ, Rico RC (1974) Specific gravity of blood and plasma at 4 and 37 C. Clin Chem 20:615–616PubMed Trudnowski RJ, Rico RC (1974) Specific gravity of blood and plasma at 4 and 37 C. Clin Chem 20:615–616PubMed
29.
go back to reference Pushparajah K, Wong JK, Bellsham-Revell HR et al (2015) Magnetic resonance imaging catheter stress haemodynamics post-Fontan in hypoplastic left heart syndrome. Eur Heart J Cardiovasc Imaging Pushparajah K, Wong JK, Bellsham-Revell HR et al (2015) Magnetic resonance imaging catheter stress haemodynamics post-Fontan in hypoplastic left heart syndrome. Eur Heart J Cardiovasc Imaging
30.
go back to reference Trusty PM, Restrepo M, Kanter KR et al (2016) A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits. J Thorac Cardiovasc Surg 151:1529–1536CrossRefPubMed Trusty PM, Restrepo M, Kanter KR et al (2016) A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits. J Thorac Cardiovasc Surg 151:1529–1536CrossRefPubMed
31.
go back to reference Martin MH, Feinstein JA, Chan FP et al (2015) Technical feasibility and intermediate outcomes of using a handcrafted, area-preserving, bifurcated Y-graft modification of the Fontan procedure. J Thorac Cardiovasc Surg 149(239–45):e1 Martin MH, Feinstein JA, Chan FP et al (2015) Technical feasibility and intermediate outcomes of using a handcrafted, area-preserving, bifurcated Y-graft modification of the Fontan procedure. J Thorac Cardiovasc Surg 149(239–45):e1
32.
go back to reference Kanski M, Arvidsson PM, Töger J et al (2015) Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J Cardiovasc Magn Reson 17:111CrossRefPubMedPubMedCentral Kanski M, Arvidsson PM, Töger J et al (2015) Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J Cardiovasc Magn Reson 17:111CrossRefPubMedPubMedCentral
33.
go back to reference Schiavazzi DE, Kung EO, Marsden AL et al (2015) Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study. J Thorac Cardiovasc Surg 149(689–696):e3 Schiavazzi DE, Kung EO, Marsden AL et al (2015) Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study. J Thorac Cardiovasc Surg 149(689–696):e3
34.
go back to reference Bolger AF, Heiberg E, Karlsson M et al (2007) Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9:741–747CrossRefPubMed Bolger AF, Heiberg E, Karlsson M et al (2007) Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9:741–747CrossRefPubMed
35.
go back to reference Mercer-Rosa L (2014) Ventricular function in tetralogy of Fallot: a waste of energy. J Thorac Cardiovasc Surg 19104:19104 Mercer-Rosa L (2014) Ventricular function in tetralogy of Fallot: a waste of energy. J Thorac Cardiovasc Surg 19104:19104
36.
go back to reference Penny DJ, Redington AN (1991) Doppler echocardiographic evaluation of pulmonary blood flow after the Fontan operation: the role of the lungs. Br Heart J 66:372–374CrossRefPubMedPubMedCentral Penny DJ, Redington AN (1991) Doppler echocardiographic evaluation of pulmonary blood flow after the Fontan operation: the role of the lungs. Br Heart J 66:372–374CrossRefPubMedPubMedCentral
Metadata
Title
Decreased Diastolic Ventricular Kinetic Energy in Young Patients with Fontan Circulation Demonstrated by Four-Dimensional Cardiac Magnetic Resonance Imaging
Authors
Pia Sjöberg
Einar Heiberg
Pär Wingren
Jens Ramgren Johansson
Torsten Malm
Håkan Arheden
Petru Liuba
Marcus Carlsson
Publication date
01-04-2017
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 4/2017
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-016-1565-6

Other articles of this Issue 4/2017

Pediatric Cardiology 4/2017 Go to the issue