Skip to main content
Top
Published in: Pediatric Cardiology 3/2010

01-04-2010 | Riley Symposium

MicroRNAs in Cardiac Development and Remodeling

Author: Da-Zhi Wang

Published in: Pediatric Cardiology | Issue 3/2010

Login to get access

Abstract

MicroRNAs (miRNAs) are a class of highly conserved, small, noncoding RNAs that play roles in a wide range of biologic processes. Dysregulated miRNA expression has been associated with human cardiovascular disease, and studies using animal models have shown that miRNAs are essential for cardiac development and remodeling. These previously unrecognized small molecules shed new light on the regulatory mechanisms underlying cardiac development and pathology, suggesting the potential importance of miRNAs as diagnostic markers and therapeutic targets for cardiovascular disease.
Literature
1.
go back to reference Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW et al (2006) The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 16:1041–1049CrossRefPubMed Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW et al (2006) The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 16:1041–1049CrossRefPubMed
2.
go back to reference Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563CrossRefPubMed Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563CrossRefPubMed
3.
go back to reference Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217CrossRefPubMed Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217CrossRefPubMed
4.
go back to reference Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786CrossRefPubMed Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786CrossRefPubMed
5.
go back to reference Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–638CrossRefPubMed Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–638CrossRefPubMed
6.
go back to reference Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033CrossRefPubMed Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033CrossRefPubMed
7.
go back to reference Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233CrossRefPubMed Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233CrossRefPubMed
8.
go back to reference Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z et al (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105:211–216 Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z et al (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105:211–216
9.
go back to reference Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297CrossRefPubMed Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297CrossRefPubMed
10.
go back to reference Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840CrossRefPubMed Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840CrossRefPubMed
11.
go back to reference Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818CrossRefPubMed Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818CrossRefPubMed
12.
go back to reference Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98CrossRefPubMed Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98CrossRefPubMed
13.
go back to reference Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79CrossRefPubMed Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79CrossRefPubMed
14.
go back to reference Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838CrossRefPubMed Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838CrossRefPubMed
15.
go back to reference Griffiths-Jones S, Saini HK, Dongen SV, Enright AJ (2007) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158CrossRefPubMed Griffiths-Jones S, Saini HK, Dongen SV, Enright AJ (2007) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158CrossRefPubMed
16.
go back to reference Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102:10898–10903CrossRefPubMed Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102:10898–10903CrossRefPubMed
17.
go back to reference Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 103:2208–2213CrossRefPubMed Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 103:2208–2213CrossRefPubMed
18.
go back to reference Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600CrossRefPubMed Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600CrossRefPubMed
19.
go back to reference Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966CrossRefPubMed Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966CrossRefPubMed
20.
go back to reference Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283CrossRefPubMed Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283CrossRefPubMed
21.
go back to reference Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151CrossRefPubMed Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151CrossRefPubMed
22.
go back to reference Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMed Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMed
23.
go back to reference Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689CrossRefPubMed Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689CrossRefPubMed
24.
25.
go back to reference Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMed Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMed
26.
go back to reference Mandel EM, Callis TE, Wang DZ, Conlon FL (2005) Transcriptional mechanisms of congenital heart disease. Drug Discov Today 2:33–38PubMed Mandel EM, Callis TE, Wang DZ, Conlon FL (2005) Transcriptional mechanisms of congenital heart disease. Drug Discov Today 2:33–38PubMed
27.
go back to reference Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMed Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMed
28.
go back to reference O’Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ et al (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311:359–368CrossRefPubMed O’Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ et al (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311:359–368CrossRefPubMed
30.
go back to reference Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927CrossRefPubMed Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927CrossRefPubMed
31.
go back to reference Ransom J, Srivastava D (2007) The genetics of cardiac birth defects. Semin Cell Dev Biol 18:132–139CrossRefPubMed Ransom J, Srivastava D (2007) The genetics of cardiac birth defects. Semin Cell Dev Biol 18:132–139CrossRefPubMed
32.
go back to reference Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726CrossRefPubMed Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726CrossRefPubMed
33.
go back to reference Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N et al (2008) Heart disease and stroke statistics―2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146CrossRefPubMed Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N et al (2008) Heart disease and stroke statistics―2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146CrossRefPubMed
34.
go back to reference Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424CrossRefPubMed Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424CrossRefPubMed
35.
go back to reference Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688CrossRefPubMed Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688CrossRefPubMed
36.
37.
go back to reference Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160CrossRefPubMed Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160CrossRefPubMed
38.
go back to reference Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141CrossRefPubMed Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141CrossRefPubMed
39.
go back to reference Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267CrossRefPubMed Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267CrossRefPubMed
40.
go back to reference van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579CrossRefPubMed van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579CrossRefPubMed
41.
go back to reference van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260CrossRefPubMed van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260CrossRefPubMed
42.
go back to reference Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218CrossRefPubMed Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218CrossRefPubMed
43.
go back to reference Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311CrossRefPubMed Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311CrossRefPubMed
44.
go back to reference Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N et al (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282:12363–12367CrossRefPubMed Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N et al (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282:12363–12367CrossRefPubMed
45.
go back to reference Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H et al (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052CrossRefPubMed Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H et al (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052CrossRefPubMed
46.
go back to reference Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491CrossRefPubMed Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491CrossRefPubMed
47.
go back to reference Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220CrossRefPubMed Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220CrossRefPubMed
48.
go back to reference Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129:303–317CrossRefPubMed Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129:303–317CrossRefPubMed
Metadata
Title
MicroRNAs in Cardiac Development and Remodeling
Author
Da-Zhi Wang
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 3/2010
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-010-9641-9

Other articles of this Issue 3/2010

Pediatric Cardiology 3/2010 Go to the issue