Skip to main content
Top
Published in: Neuroradiology 6/2015

01-06-2015 | Diagnostic Neuroradiology

Delay-sensitive and delay-insensitive deconvolution perfusion-CT: similar ischemic core and penumbra volumes if appropriate threshold selected for each

Authors: Fengyuan Man, James T. Patrie, Wenjun Xin, Guangming Zhu, Qinghua Hou, Patrik Michel, Ashraf Eskandari, Tudor Jovin, Junfang Xian, Zhenchang Wang, Max Wintermark

Published in: Neuroradiology | Issue 6/2015

Login to get access

Abstract

Introduction

Perfusion-CT (PCT) processing involves deconvolution, a mathematical operation that computes the perfusion parameters from the PCT time density curves and an arterial curve. Delay-sensitive deconvolution does not correct for arrival delay of contrast, whereas delay-insensitive deconvolution does. The goal of this study was to compare delay-sensitive and delay-insensitive deconvolution PCT in terms of delineation of the ischemic core and penumbra.

Methods

We retrospectively identified 100 patients with acute ischemic stroke who underwent admission PCT and CT angiography (CTA), a follow-up vascular study to determine recanalization status, and a follow-up noncontrast head CT (NCT) or MRI to calculate final infarct volume. PCT datasets were processed twice, once using delay-sensitive deconvolution and once using delay-insensitive deconvolution. Regions of interest (ROIs) were drawn, and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) in these ROIs were recorded and compared. Volume and geographic distribution of ischemic core and penumbra using both deconvolution methods were also recorded and compared.

Results

MTT and CBF values are affected by the deconvolution method used (p < 0.05), while CBV values remain unchanged. Optimal thresholds to delineate ischemic core and penumbra are different for delay-sensitive (145 % MTT, CBV 2 ml × 100 g−1 × min−1) and delay-insensitive deconvolution (135 % MTT, CBV 2 ml × 100 g−1 × min−1 for delay-insensitive deconvolution). When applying these different thresholds, however, the predicted ischemic core (p = 0.366) and penumbra (p = 0.405) were similar with both methods.

Conclusion

Both delay-sensitive and delay-insensitive deconvolution methods are appropriate for PCT processing in acute ischemic stroke patients. The predicted ischemic core and penumbra are similar with both methods when using different sets of thresholds, specific for each deconvolution method.
Literature
3.
go back to reference Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caille JM, Dousset V, Yonas H (2005) Comparative overview of brain perfusion imaging techniques. J Neuroradiol J Neuroradiol 32(5):294–314CrossRef Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caille JM, Dousset V, Yonas H (2005) Comparative overview of brain perfusion imaging techniques. J Neuroradiol J Neuroradiol 32(5):294–314CrossRef
8.
go back to reference Abels B, Klotz E, Tomandl BF, Kloska SP, Lell MM (2010) Perfusion CT in acute ischemic stroke: a qualitative and quantitative comparison of deconvolution and maximum slope approach. AJNR Am J Neuroradiol 31(9):1690–1698. doi:10.3174/ajnr.A2151 CrossRefPubMed Abels B, Klotz E, Tomandl BF, Kloska SP, Lell MM (2010) Perfusion CT in acute ischemic stroke: a qualitative and quantitative comparison of deconvolution and maximum slope approach. AJNR Am J Neuroradiol 31(9):1690–1698. doi:10.​3174/​ajnr.​A2151 CrossRefPubMed
9.
go back to reference Konstas AA, Goldmakher GV, Lee TY, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. AJNR Am J Neuroradiol 30(4):662–668. doi:10.3174/ajnr.A1487 CrossRefPubMed Konstas AA, Goldmakher GV, Lee TY, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. AJNR Am J Neuroradiol 30(4):662–668. doi:10.​3174/​ajnr.​A1487 CrossRefPubMed
10.
go back to reference Leiva-Salinas C, Provenzale JM, Kudo K, Sasaki M, Wintermark M (2012) The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions. Neuroradiology 54(9):907–918. doi:10.1007/s00234-012-1028-6 CrossRefPubMed Leiva-Salinas C, Provenzale JM, Kudo K, Sasaki M, Wintermark M (2012) The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions. Neuroradiology 54(9):907–918. doi:10.​1007/​s00234-012-1028-6 CrossRefPubMed
11.
go back to reference Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 44(3):466–473CrossRef Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 44(3):466–473CrossRef
12.
go back to reference Calamante F, Yim PJ, Cebral JR (2003) Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. NeuroImage 19(2 Pt 1):341–353CrossRefPubMed Calamante F, Yim PJ, Cebral JR (2003) Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. NeuroImage 19(2 Pt 1):341–353CrossRefPubMed
13.
go back to reference Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 50(1):164–174. doi:10.1002/mrm.10522 CrossRef Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 50(1):164–174. doi:10.​1002/​mrm.​10522 CrossRef
14.
go back to reference Schaefer PW, Mui K, Kamalian S, Nogueira RG, Gonzalez RG, Lev MH (2009) Avoiding “pseudo-reversibility” of CT-CBV infarct core lesions in acute stroke patients after thrombolytic therapy the need for algorithmically “delay-corrected” CT perfusion map postprocessing software. Stroke J Cereb Circ 40(8):2875–2878CrossRef Schaefer PW, Mui K, Kamalian S, Nogueira RG, Gonzalez RG, Lev MH (2009) Avoiding “pseudo-reversibility” of CT-CBV infarct core lesions in acute stroke patients after thrombolytic therapy the need for algorithmically “delay-corrected” CT perfusion map postprocessing software. Stroke J Cereb Circ 40(8):2875–2878CrossRef
15.
go back to reference Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11(7):1220–1230CrossRefPubMed Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11(7):1220–1230CrossRefPubMed
16.
go back to reference Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke J Cereb Circ 37(4):979–985. doi:10.1161/01.STR.0000209238.61459.39 CrossRef Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke J Cereb Circ 37(4):979–985. doi:10.​1161/​01.​STR.​0000209238.​61459.​39 CrossRef
18.
go back to reference Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke J Cereb Circ 33(4):1146–1151CrossRef Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke J Cereb Circ 33(4):1146–1151CrossRef
19.
go back to reference Bivard A, Levi C, Spratt N, Parsons M (2013) Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology 267(2):543–550CrossRefPubMed Bivard A, Levi C, Spratt N, Parsons M (2013) Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology 267(2):543–550CrossRefPubMed
Metadata
Title
Delay-sensitive and delay-insensitive deconvolution perfusion-CT: similar ischemic core and penumbra volumes if appropriate threshold selected for each
Authors
Fengyuan Man
James T. Patrie
Wenjun Xin
Guangming Zhu
Qinghua Hou
Patrik Michel
Ashraf Eskandari
Tudor Jovin
Junfang Xian
Zhenchang Wang
Max Wintermark
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 6/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1507-7

Other articles of this Issue 6/2015

Neuroradiology 6/2015 Go to the issue