Skip to main content
Top
Published in: Neuroradiology 6/2015

01-06-2015 | Diagnostic Neuroradiology

The impact of reliable prebolus T 1 measurements or a fixed T 1 value in the assessment of glioma patients with dynamic contrast enhancing MRI

Authors: Anna Tietze, Kim Mouridsen, Irene Klærke Mikkelsen

Published in: Neuroradiology | Issue 6/2015

Login to get access

Abstract

Introduction

Accurate quantification of hemodynamic parameters using dynamic contrast enhanced (DCE) MRI requires a measurement of tissue T 1 prior to contrast injection (T 1). We evaluate (i) T 1 estimation using the variable flip angle (VFA) and the saturation recovery (SR) techniques and (ii) investigate if accurate estimation of DCE parameters outperform a time-saving approach with a predefined T 1 value when differentiating high- from low-grade gliomas.

Methods

The accuracy and precision of T 1 measurements, acquired by VFA and SR, were investigated by computer simulations and in glioma patients using an equivalence test (p > 0.05 showing significant difference). The permeability measure, K trans, cerebral blood flow (CBF), and - volume, V p, were calculated in 42 glioma patients, using fixed T 1 of 1500 ms or an individual T 1 measurement, using SR. The areas under the receiver operating characteristic curves (AUCs) were used as measures for accuracy to differentiate tumor grade.

Results

The T 1 values obtained by VFA showed larger variation compared to those obtained using SR both in the digital phantom and the human data (p > 0.05). Although a fixed T 1 introduced a bias into the DCE calculation, this had only minor impact on the accuracy differentiating high-grade from low-grade gliomas, (AUCfix = 0.906 and AUCind = 0.884 for K trans; AUCfix = 0.863 and AUCind = 0.856 for V p; p for AUC comparison > 0.05).

Conclusion

T 1 measurements by VFA were less precise, and the SR method is preferable, when accurate parameter estimation is required. Semiquantitative DCE values, based on predefined T 1 values, were sufficient to perform tumor grading in our study.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622CrossRefPubMed Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622CrossRefPubMed
2.
go back to reference Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66:11520–11539CrossRefPubMed Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66:11520–11539CrossRefPubMed
3.
go back to reference Dale BM, Jesberger JA, Lewin JS, Hillenbrand CM, Duerk JL (2003) Determining and optimizing the precision of quantitative measurements of perfusion from dynamic contrast enhanced MRI. J Magn Reson Imaging 18:575–584CrossRefPubMed Dale BM, Jesberger JA, Lewin JS, Hillenbrand CM, Duerk JL (2003) Determining and optimizing the precision of quantitative measurements of perfusion from dynamic contrast enhanced MRI. J Magn Reson Imaging 18:575–584CrossRefPubMed
4.
go back to reference Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, Merkle EM, Boll DT (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811CrossRefPubMed Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, Merkle EM, Boll DT (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811CrossRefPubMed
5.
go back to reference Huang W, Li X, Chen Y, Li X, Chang MC, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, Fedorov A, Tudorica A, Gupta SN, Laymon CM, Marro KI, Dyvorne HA, Miller JV, Barbodiak DP, Chenevert TL, Yankeelov TE, Mountz JM, Kinahan PE, Kikinis R, Taouli B, Fennessy F, Kalpathy-Cramer J (2014) Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol 7:153–166CrossRefPubMedCentralPubMed Huang W, Li X, Chen Y, Li X, Chang MC, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, Fedorov A, Tudorica A, Gupta SN, Laymon CM, Marro KI, Dyvorne HA, Miller JV, Barbodiak DP, Chenevert TL, Yankeelov TE, Mountz JM, Kinahan PE, Kikinis R, Taouli B, Fennessy F, Kalpathy-Cramer J (2014) Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol 7:153–166CrossRefPubMedCentralPubMed
6.
go back to reference Walker-Samuel S, Parker CC, Leach MO, Collins DJ (2007) Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: comparison with a fixed vascular input function. Phys Med Biol 52:75–89CrossRefPubMed Walker-Samuel S, Parker CC, Leach MO, Collins DJ (2007) Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: comparison with a fixed vascular input function. Phys Med Biol 52:75–89CrossRefPubMed
7.
go back to reference Haacke EM, Filleti CL, Gattu R, Ciulla C, Al-Bashir A, Suryanarayanan K, Li M, Latif Z, DelProposto Z, Sehgal V, Li T, Torquato V, Kanaparti R, Jiang J, Neelavalli J (2007) New algorithm for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 values. Magn Reson Med 58:463–472CrossRefPubMed Haacke EM, Filleti CL, Gattu R, Ciulla C, Al-Bashir A, Suryanarayanan K, Li M, Latif Z, DelProposto Z, Sehgal V, Li T, Torquato V, Kanaparti R, Jiang J, Neelavalli J (2007) New algorithm for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 values. Magn Reson Med 58:463–472CrossRefPubMed
8.
go back to reference Yuan J, Chow SK, Yeung DK, Ahuja AT, King AD (2012) Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck. Quant Imaging Med Surg 2:245–253PubMedCentralPubMed Yuan J, Chow SK, Yeung DK, Ahuja AT, King AD (2012) Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck. Quant Imaging Med Surg 2:245–253PubMedCentralPubMed
9.
go back to reference Larsson C, Kleppesto M, Grothe I, Vardal J, Bjornerud A (2015) T1 in high-grade glioma and the influence of different measurement strategies on parameter estimations in DCE-MRI. J Magn Reson Imaging. doi:10.1002/jmri.24772 Larsson C, Kleppesto M, Grothe I, Vardal J, Bjornerud A (2015) T1 in high-grade glioma and the influence of different measurement strategies on parameter estimations in DCE-MRI. J Magn Reson Imaging. doi:10.​1002/​jmri.​24772
10.
go back to reference Guo JY, Reddick WE, Rosen MA, Song HK (2009) Dynamic contrast-enhanced magnetic resonance imaging parameters independent of baseline T-10 values. Magn Reson Imaging 27:1208–1215CrossRefPubMedCentralPubMed Guo JY, Reddick WE, Rosen MA, Song HK (2009) Dynamic contrast-enhanced magnetic resonance imaging parameters independent of baseline T-10 values. Magn Reson Imaging 27:1208–1215CrossRefPubMedCentralPubMed
11.
go back to reference Li J, Yu YM, Zhang YB, Bao SL, Wu CX, Wang XY, Li J, Zhang XP, Hu JN (2009) A clinically feasible method to estimate pharmacokinetic parameters in breast cancer. Med Phys 36:3786–3794CrossRefPubMedCentralPubMed Li J, Yu YM, Zhang YB, Bao SL, Wu CX, Wang XY, Li J, Zhang XP, Hu JN (2009) A clinically feasible method to estimate pharmacokinetic parameters in breast cancer. Med Phys 36:3786–3794CrossRefPubMedCentralPubMed
12.
go back to reference Kaldoudi E, Williams SCR (1993) Relaxation time measurements in NMR imaging. Part I: longitudinal relaxation time. Concepts Magn Reson 5:217–242CrossRef Kaldoudi E, Williams SCR (1993) Relaxation time measurements in NMR imaging. Part I: longitudinal relaxation time. Concepts Magn Reson 5:217–242CrossRef
13.
go back to reference Mikkelsen IK, Peters DA, Tietze A (2012) DCE-PWI 3D T1-measurement as function of time or flip angle. ISMRM, Melbourne, Australien Mikkelsen IK, Peters DA, Tietze A (2012) DCE-PWI 3D T1-measurement as function of time or flip angle. ISMRM, Melbourne, Australien
14.
go back to reference Studler U, White LM, Andreisek G, Luu S, Cheng HL, Sussman MS (2010) Impact of motion on T1 mapping acquired with inversion recovery fast spin echo and rapid spoiled gradient recalled-echo pulse sequences for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in volunteers. J Magn Reson Imaging 32:394–398CrossRefPubMed Studler U, White LM, Andreisek G, Luu S, Cheng HL, Sussman MS (2010) Impact of motion on T1 mapping acquired with inversion recovery fast spin echo and rapid spoiled gradient recalled-echo pulse sequences for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in volunteers. J Magn Reson Imaging 32:394–398CrossRefPubMed
15.
go back to reference Larsson HB, Courivaud F, Rostrup E, Hansen AE (2009) Measurement of brain perfusion, blood volume, and blood–brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 62:1270–1281CrossRefPubMed Larsson HB, Courivaud F, Rostrup E, Hansen AE (2009) Measurement of brain perfusion, blood volume, and blood–brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 62:1270–1281CrossRefPubMed
16.
go back to reference Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217CrossRefPubMed Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217CrossRefPubMed
17.
go back to reference Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 9:531–538CrossRefPubMed Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 9:531–538CrossRefPubMed
18.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
19.
go back to reference Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RS, Helms G, Weiskopf N (2011) Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55:1423–1434CrossRefPubMedCentralPubMed Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RS, Helms G, Weiskopf N (2011) Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55:1423–1434CrossRefPubMedCentralPubMed
20.
go back to reference Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P (2007) Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 57:568–576CrossRefPubMed Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P (2007) Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 57:568–576CrossRefPubMed
22.
go back to reference Sung K, Daniel BL, Hargreaves BA (2013) Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging 38:454–459CrossRefPubMedCentralPubMed Sung K, Daniel BL, Hargreaves BA (2013) Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging 38:454–459CrossRefPubMedCentralPubMed
23.
go back to reference Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292CrossRefPubMed Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292CrossRefPubMed
24.
go back to reference Yun TJ, Park CK, Kim TM, Lee SH, Kim JH, Sohn CH, Park SH, Kim IH, Choi SH (2014) Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. doi:10.1148/radiol.14132632 Yun TJ, Park CK, Kim TM, Lee SH, Kim JH, Sohn CH, Park SH, Kim IH, Choi SH (2014) Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. doi:10.​1148/​radiol.​14132632
25.
26.
go back to reference Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–5300CrossRefPubMedCentralPubMed Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–5300CrossRefPubMedCentralPubMed
27.
go back to reference Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95CrossRefPubMedCentralPubMed Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95CrossRefPubMedCentralPubMed
28.
go back to reference Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373CrossRefPubMedCentralPubMed Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373CrossRefPubMedCentralPubMed
29.
go back to reference Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S (2006) Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 33:570–579CrossRefPubMed Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S (2006) Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 33:570–579CrossRefPubMed
Metadata
Title
The impact of reliable prebolus T 1 measurements or a fixed T 1 value in the assessment of glioma patients with dynamic contrast enhancing MRI
Authors
Anna Tietze
Kim Mouridsen
Irene Klærke Mikkelsen
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 6/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1502-z

Other articles of this Issue 6/2015

Neuroradiology 6/2015 Go to the issue