Skip to main content
Top
Published in: Neuroradiology 2/2015

01-02-2015 | Continuing Education

Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption

Authors: Long Chen, Gavin Elias, Marina P. Yostos, Bojan Stimec, Jean Fasel, Kieran Murphy

Published in: Neuroradiology | Issue 2/2015

Login to get access

Abstract

Introduction

Cerebrospinal fluid (CSF) absorption has long been held to predominantly entail drainage into the venous outflow system via the intracranial arachnoid granulations. Newer data suggest pathways involving spinal arachnoid granulations and lymphatic channels may also make substantial contributions to CSF outflow.

Methods

The putative major CSF outflow pathways and their proportionate contribution to CSF absorption were reviewed in this article.

Results

CSF is absorbed and drained in bulk not just through cerebral arachnoid granulations (CAG) but also through spinal arachnoid granulations (SAG) and a lymphatic pathway involving egress through cranial and spinal nerve sheaths. The proportions of CSF that efflux through each of these major pathways have yet to be determined with any certainty in humans, though existing evidence (the majority of which is derived from animal studies) suggests that lymphatic pathways may account for up to 50 % of CSF outflow—presumably leaving the CAG and SAG to process the balance.

Conclusion

Knowledge of the CSF pathways holds implications for our ability to understand, prognose, and even treat diseases related to CSF circulation and so is a matter of considerable relevance to neuroradiology and neurology.
Literature
1.
go back to reference Kapoor KG, Katz SE, Grzybowski DM, Lubow M (2008) Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull 77:327–334CrossRefPubMed Kapoor KG, Katz SE, Grzybowski DM, Lubow M (2008) Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull 77:327–334CrossRefPubMed
2.
go back to reference Oreskovic D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262CrossRefPubMed Oreskovic D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262CrossRefPubMed
3.
go back to reference Brunori A, Vagnozzi R, Giuffre R (1993) Antonio Pacchioni (1665–1726): early studies of the dura mater. J Neurosurg 78:515–518CrossRefPubMed Brunori A, Vagnozzi R, Giuffre R (1993) Antonio Pacchioni (1665–1726): early studies of the dura mater. J Neurosurg 78:515–518CrossRefPubMed
4.
go back to reference Galarza M (2002) Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 25:205–215CrossRefPubMed Galarza M (2002) Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 25:205–215CrossRefPubMed
6.
go back to reference Gomez DG, DiBenedetto AT, Pavese AM, Firpo A, Hershan DB, Potts DG (1982) Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111:247–258 Gomez DG, DiBenedetto AT, Pavese AM, Firpo A, Hershan DB, Potts DG (1982) Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111:247–258
8.
go back to reference Johnston M, Papaiconomou C (2002) Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci 17:227–230PubMed Johnston M, Papaiconomou C (2002) Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci 17:227–230PubMed
9.
go back to reference Weed LH (1914) Studies on cerebro-spinal fluid. No. II: the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 31:21–49PubMedCentralPubMed Weed LH (1914) Studies on cerebro-spinal fluid. No. II: the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 31:21–49PubMedCentralPubMed
10.
go back to reference D’Avella D, Cicciarello R, Albiero F, Andrioli G (1983) Scanning electron microscope study of human arachnoid villi. J Neurosurg 59:620–626CrossRefPubMed D’Avella D, Cicciarello R, Albiero F, Andrioli G (1983) Scanning electron microscope study of human arachnoid villi. J Neurosurg 59:620–626CrossRefPubMed
11.
go back to reference Yamashima T (1986) Ultrastructural study of the final cerebrospinal fluid pathway in human arachnoid villi. Brain Res 384:68–76CrossRefPubMed Yamashima T (1986) Ultrastructural study of the final cerebrospinal fluid pathway in human arachnoid villi. Brain Res 384:68–76CrossRefPubMed
12.
go back to reference Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435CrossRefPubMed Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435CrossRefPubMed
13.
go back to reference Ohta K, Inokuchi T, Hayashida Y, Mizukami T, Yoshida T, Kawahara T (2002) Regional diminution of von Willebrand factor expression on the endothelial covering arachnoid granulations of human, monkey and dog brain. Kurume Med J 49:177–183CrossRefPubMed Ohta K, Inokuchi T, Hayashida Y, Mizukami T, Yoshida T, Kawahara T (2002) Regional diminution of von Willebrand factor expression on the endothelial covering arachnoid granulations of human, monkey and dog brain. Kurume Med J 49:177–183CrossRefPubMed
14.
go back to reference Welch K, Pollay M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654PubMed Welch K, Pollay M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654PubMed
16.
go back to reference Tripathi RC (1977) The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 25(Suppl):65–116CrossRefPubMed Tripathi RC (1977) The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 25(Suppl):65–116CrossRefPubMed
17.
go back to reference Grzybowski DM, Holman DW, Katz SE, Lubow M (2006) In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci 47:3664–3672CrossRefPubMed Grzybowski DM, Holman DW, Katz SE, Lubow M (2006) In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci 47:3664–3672CrossRefPubMed
18.
go back to reference Glimcher SA, Holman DW, Lubow M, Grzybowski DM (2008) Ex vivo model of cerebrospinal fluid outflow across human arachnoid granulations. Invest Ophthalmol Vis Sci 49:4721–4728CrossRefPubMed Glimcher SA, Holman DW, Lubow M, Grzybowski DM (2008) Ex vivo model of cerebrospinal fluid outflow across human arachnoid granulations. Invest Ophthalmol Vis Sci 49:4721–4728CrossRefPubMed
19.
go back to reference Brierley JB, Field EJ (1948) The connexions of the spinal sub-arachnoid space with the lymphatic system. J Anat 82:153–166PubMedCentral Brierley JB, Field EJ (1948) The connexions of the spinal sub-arachnoid space with the lymphatic system. J Anat 82:153–166PubMedCentral
20.
go back to reference Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaeus and Macaca irus. Anat Rec 145:43–48CrossRefPubMed Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaeus and Macaca irus. Anat Rec 145:43–48CrossRefPubMed
21.
go back to reference Shantha TR, Evans JA (1972) The relationship of epidural anesthesia to neural membranes and arachnoid villi. Anesthesiology 37:543–557CrossRefPubMed Shantha TR, Evans JA (1972) The relationship of epidural anesthesia to neural membranes and arachnoid villi. Anesthesiology 37:543–557CrossRefPubMed
22.
go back to reference Kido DK, Gomez DG, Pavese AM Jr, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11:221–228CrossRefPubMed Kido DK, Gomez DG, Pavese AM Jr, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11:221–228CrossRefPubMed
23.
go back to reference Miura M, Kato S, von Ludinghausen M (1998) Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. Arch Histol Cytol 61:277–286CrossRefPubMed Miura M, Kato S, von Ludinghausen M (1998) Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. Arch Histol Cytol 61:277–286CrossRefPubMed
24.
go back to reference Tubbs RS, Hansasuta A, Stetler W, Kelly DR, Blevins D, Humphrey R, Chua GD, Shoja MM, Loukas M, Oakes WJ (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7:328–331CrossRefPubMed Tubbs RS, Hansasuta A, Stetler W, Kelly DR, Blevins D, Humphrey R, Chua GD, Shoja MM, Loukas M, Oakes WJ (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7:328–331CrossRefPubMed
25.
go back to reference Seyfert S, Koch HC, Kunzmann V (2003) Conditions of iodine contrast transfer from lumbosacral CSF to blood. J Neurol Sci 206:85–90CrossRefPubMed Seyfert S, Koch HC, Kunzmann V (2003) Conditions of iodine contrast transfer from lumbosacral CSF to blood. J Neurol Sci 206:85–90CrossRefPubMed
26.
go back to reference Biceroglu H, Albayram S, Ogullar S, Hasiloglu ZI, Selcuk H, Yuksel O, Karaaslan B, Yildiz C, Kiris A (2012) Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 16:394–401CrossRefPubMed Biceroglu H, Albayram S, Ogullar S, Hasiloglu ZI, Selcuk H, Yuksel O, Karaaslan B, Yildiz C, Kiris A (2012) Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 16:394–401CrossRefPubMed
27.
go back to reference Bozanovic-Sosic R, Mollanji R, Johnston MG (2001) Spinal and cranial contributions to total cerebrospinal fluid transport. Am J Physiol Regul Integr Comp Physiol 281:R909–916PubMed Bozanovic-Sosic R, Mollanji R, Johnston MG (2001) Spinal and cranial contributions to total cerebrospinal fluid transport. Am J Physiol Regul Integr Comp Physiol 281:R909–916PubMed
28.
go back to reference Kelkenberg U, von Rautenfeld DB, Brinker T, Hans VH (2001) Chicken arachnoid granulations: a new model for cerebrospinal fluid absorption in man. Neuroreport 12:553–557CrossRefPubMed Kelkenberg U, von Rautenfeld DB, Brinker T, Hans VH (2001) Chicken arachnoid granulations: a new model for cerebrospinal fluid absorption in man. Neuroreport 12:553–557CrossRefPubMed
29.
go back to reference Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2:6CrossRefPubMedCentralPubMed Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2:6CrossRefPubMedCentralPubMed
30.
go back to reference Svane-Knudsen V (1958) Resorption of the cerebro-spinal fluid in guinea-pig; an experimental study. Acta Otolaryngol 49:240–251CrossRefPubMed Svane-Knudsen V (1958) Resorption of the cerebro-spinal fluid in guinea-pig; an experimental study. Acta Otolaryngol 49:240–251CrossRefPubMed
31.
go back to reference Czerniawska A (1970) Experimental investigations on the penetration of 198Au from nasal mucous membrane into cerebrospinal fluid. Acta Otolaryngol 70:58–61CrossRefPubMed Czerniawska A (1970) Experimental investigations on the penetration of 198Au from nasal mucous membrane into cerebrospinal fluid. Acta Otolaryngol 70:58–61CrossRefPubMed
32.
go back to reference Arnold W, Nitze HR, Ritter R, von Ilberg C, Ganzer U (1972) Qualitative study of the connections of the subarachnoid space with the lymphatic system of the head and neck. Acta Otolaryngol 74:411–424CrossRefPubMed Arnold W, Nitze HR, Ritter R, von Ilberg C, Ganzer U (1972) Qualitative study of the connections of the subarachnoid space with the lymphatic system of the head and neck. Acta Otolaryngol 74:411–424CrossRefPubMed
33.
go back to reference Pile-Spellman JM, McKusick KA, Strauss HW, Cooney J, Taveras JM (1984) Experimental in vivo imaging of the cranial perineural lymphatic pathway. AJNR Am J Neuroradiol 5:539–545PubMed Pile-Spellman JM, McKusick KA, Strauss HW, Cooney J, Taveras JM (1984) Experimental in vivo imaging of the cranial perineural lymphatic pathway. AJNR Am J Neuroradiol 5:539–545PubMed
34.
go back to reference Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488CrossRefPubMed Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488CrossRefPubMed
35.
go back to reference Boulton M, Young A, Hay J, Armstrong D, Flessner M, Schwartz M, Johnston M (1996) Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I-albumin clearance. Neuropathol Appl Neurobiol 22:325–333CrossRefPubMed Boulton M, Young A, Hay J, Armstrong D, Flessner M, Schwartz M, Johnston M (1996) Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I-albumin clearance. Neuropathol Appl Neurobiol 22:325–333CrossRefPubMed
36.
go back to reference Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnston M (2001) Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 281:R1215–1223PubMed Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnston M (2001) Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 281:R1215–1223PubMed
37.
go back to reference Mollanji R, Bozanovic-Sosic R, Silver I, Li B, Kim C, Midha R, Johnston M (2001) Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol Regul Integr Comp Physiol 280:R1573–1581PubMed Mollanji R, Bozanovic-Sosic R, Silver I, Li B, Kim C, Midha R, Johnston M (2001) Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol Regul Integr Comp Physiol 280:R1573–1581PubMed
38.
go back to reference Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282:R1593–1599PubMed Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282:R1593–1599PubMed
39.
go back to reference Silver I, Kim C, Mollanji R, Johnston M (2002) Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol Appl Neurobiol 28:67–74CrossRefPubMed Silver I, Kim C, Mollanji R, Johnston M (2002) Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol Appl Neurobiol 28:67–74CrossRefPubMed
40.
go back to reference Zakharov A, Papaiconomou C, Djenic J, Midha R, Johnston M (2003) Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol 29:563–573CrossRefPubMed Zakharov A, Papaiconomou C, Djenic J, Midha R, Johnston M (2003) Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol 29:563–573CrossRefPubMed
41.
go back to reference Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2CrossRefPubMedCentralPubMed Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2CrossRefPubMedCentralPubMed
42.
go back to reference Mathieu E, Gupta N, Macdonald RL, Ai J, Yucel YH (2013) In vivo imaging of lymphatic drainage of cerebrospinal fluid in mouse. Fluids Barriers CNS 10:35CrossRefPubMedCentralPubMed Mathieu E, Gupta N, Macdonald RL, Ai J, Yucel YH (2013) In vivo imaging of lymphatic drainage of cerebrospinal fluid in mouse. Fluids Barriers CNS 10:35CrossRefPubMedCentralPubMed
43.
go back to reference Lowhagen P, Johansson BB, Nordborg C (1994) The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20:543–550CrossRefPubMed Lowhagen P, Johansson BB, Nordborg C (1994) The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20:543–550CrossRefPubMed
44.
go back to reference Jackson RT, Tigges J, Arnold W (1979) Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol 105:180–184CrossRefPubMed Jackson RT, Tigges J, Arnold W (1979) Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol 105:180–184CrossRefPubMed
45.
go back to reference Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Ludemann W (2007) A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol 113:569–575CrossRefPubMed Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Ludemann W (2007) A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol 113:569–575CrossRefPubMed
46.
go back to reference Faulhauer K, Donauer E (1985) Experimental hydrocephalus and hydrosyringomyelia in the cat. Radiological findings Acta Neurochir (Wien) 74:72–80CrossRef Faulhauer K, Donauer E (1985) Experimental hydrocephalus and hydrosyringomyelia in the cat. Radiological findings Acta Neurochir (Wien) 74:72–80CrossRef
47.
go back to reference Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T, Berens von Rautenfeld D (2002) Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl 81:271–273PubMed Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T, Berens von Rautenfeld D (2002) Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl 81:271–273PubMed
48.
go back to reference Brinker T, Ludemann W, von Rautenfeld DB, Brassel F, Becker H, Samii M (1997) Breakdown of the meningeal barrier surrounding the intraorbital optic nerve after experimental subarachnoid hemorrhage. Am J Ophthalmol 124:373–380CrossRefPubMed Brinker T, Ludemann W, von Rautenfeld DB, Brassel F, Becker H, Samii M (1997) Breakdown of the meningeal barrier surrounding the intraorbital optic nerve after experimental subarachnoid hemorrhage. Am J Ophthalmol 124:373–380CrossRefPubMed
49.
go back to reference Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309CrossRefPubMedCentralPubMed Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309CrossRefPubMedCentralPubMed
50.
51.
go back to reference Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274:R88–96PubMed Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274:R88–96PubMed
52.
go back to reference Boulton M, Armstrong D, Flessner M, Hay J, Szalai JP, Johnston M (1998) Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics. Am J Physiol 275:R889–896PubMed Boulton M, Armstrong D, Flessner M, Hay J, Szalai JP, Johnston M (1998) Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics. Am J Physiol 275:R889–896PubMed
53.
go back to reference Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M (1999) Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 276:R818–823PubMed Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M (1999) Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 276:R818–823PubMed
54.
go back to reference Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10CrossRefPubMedCentralPubMed Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10CrossRefPubMedCentralPubMed
55.
go back to reference Koh L, Zakharov A, Nagra G, Armstrong D, Friendship R, Johnston M (2006) Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates. Anat Embryol (Berl) 211:335–344CrossRef Koh L, Zakharov A, Nagra G, Armstrong D, Friendship R, Johnston M (2006) Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates. Anat Embryol (Berl) 211:335–344CrossRef
56.
go back to reference Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol 283:R869–876PubMed Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol 283:R869–876PubMed
57.
go back to reference Jones HC (1985) Cerebrospinal fluid pressure and resistance to absorption during development in normal and hydrocephalic mutant mice. Exp Neurol 90:162–172CrossRefPubMed Jones HC (1985) Cerebrospinal fluid pressure and resistance to absorption during development in normal and hydrocephalic mutant mice. Exp Neurol 90:162–172CrossRefPubMed
58.
go back to reference Nagra G, Johnston MG (2007) Impact of ageing on lymphatic cerebrospinal fluid absorption in the rat. Neuropathol Appl Neurobiol 33:684–691CrossRefPubMed Nagra G, Johnston MG (2007) Impact of ageing on lymphatic cerebrospinal fluid absorption in the rat. Neuropathol Appl Neurobiol 33:684–691CrossRefPubMed
59.
go back to reference Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43:523–534CrossRefPubMed Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43:523–534CrossRefPubMed
60.
go back to reference Edsbagge M, Tisell M, Jacobsson L, Wikkelso C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol 287:R1450–1455CrossRefPubMed Edsbagge M, Tisell M, Jacobsson L, Wikkelso C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol 287:R1450–1455CrossRefPubMed
61.
go back to reference Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol, Head Neck Dis 128:309–316CrossRef Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol, Head Neck Dis 128:309–316CrossRef
62.
go back to reference Rexed B (1947) Arachnoidal proliferations with cyst formation in human spinal nerve roots at their entry into the intervertebral foramina; preliminary report. J Neurosurg 4:414–421CrossRefPubMed Rexed B (1947) Arachnoidal proliferations with cyst formation in human spinal nerve roots at their entry into the intervertebral foramina; preliminary report. J Neurosurg 4:414–421CrossRefPubMed
63.
go back to reference Naruse I, Ueta E (2002) Hydrocephalus manifestation in the genetic polydactyly/arhinencephaly mouse (Pdn/Pdn). Congenit Anom (Kyoto) 42:27–31CrossRef Naruse I, Ueta E (2002) Hydrocephalus manifestation in the genetic polydactyly/arhinencephaly mouse (Pdn/Pdn). Congenit Anom (Kyoto) 42:27–31CrossRef
64.
go back to reference Linninger AA, Sweetman B, Penn R (2009) Normal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargement. Ann Biomed Eng 37:1434–1447CrossRefPubMed Linninger AA, Sweetman B, Penn R (2009) Normal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargement. Ann Biomed Eng 37:1434–1447CrossRefPubMed
65.
go back to reference Calcagni ML, Lavalle M, Mangiola A, Indovina L, Leccisotti L, De Bonis P, Marra C, Pelliccioni A, Anile C, Giordano A (2012) Early evaluation of cerebral metabolic rate of glucose (CMRglu) with 18F-FDG PET/CT and clinical assessment in idiopathic normal pressure hydrocephalus (INPH) patients before and after ventricular shunt placement: preliminary experience. Eur J Nucl Med Mol Imaging 39:236–241CrossRefPubMed Calcagni ML, Lavalle M, Mangiola A, Indovina L, Leccisotti L, De Bonis P, Marra C, Pelliccioni A, Anile C, Giordano A (2012) Early evaluation of cerebral metabolic rate of glucose (CMRglu) with 18F-FDG PET/CT and clinical assessment in idiopathic normal pressure hydrocephalus (INPH) patients before and after ventricular shunt placement: preliminary experience. Eur J Nucl Med Mol Imaging 39:236–241CrossRefPubMed
66.
go back to reference Reiss-Zimmermann M, Scheel M, Dengl M, Preuss M, Fritzsch D, Hoffmann KT (2013) The influence of lumbar spinal drainage on diffusion parameters in patients with suspected normal pressure hydrocephalus using 3T MRI. Acta Radiol 55:622–630CrossRefPubMed Reiss-Zimmermann M, Scheel M, Dengl M, Preuss M, Fritzsch D, Hoffmann KT (2013) The influence of lumbar spinal drainage on diffusion parameters in patients with suspected normal pressure hydrocephalus using 3T MRI. Acta Radiol 55:622–630CrossRefPubMed
Metadata
Title
Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption
Authors
Long Chen
Gavin Elias
Marina P. Yostos
Bojan Stimec
Jean Fasel
Kieran Murphy
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 2/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-014-1461-9

Other articles of this Issue 2/2015

Neuroradiology 2/2015 Go to the issue