Skip to main content
Top
Published in: Calcified Tissue International 1/2021

01-07-2021 | Sympathectomy | Original Research

Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice

Authors: Liu Shi, Yang Liu, Zhengmeng Yang, Tianyi Wu, Hiu Tung Lo, Jia Xu, Jiajun Zhang, Weiping Lin, Jinfang Zhang, Lu Feng, Gang Li

Published in: Calcified Tissue International | Issue 1/2021

Login to get access

Abstract

Vasoactive intestinal peptide (VIP) as a neuromodulator and neurotransmitter played a significant role in modulating bone homeostasis. Our previous study reported an essential role of VIP in in vitro BMSCs osteogenesis and in vivo bone defect repair. VIP was also revealed to have a promoting effect on embryonic skeletal element development. However, the role of VIP in fracture healing is not known yet. We hypothesized that the disorder of sympathetic nervous system impairs bone structure and fracture healing, whereas VIP may rescue the sympathetic inhibition effects and promote fracture healing. We employed a 6-hydroxydopamine (6-OHDA) induced sympathectomy mice model (sympathectomized mice), in which successful sympathetic inhibition was confirmed by a decreased level of norephedrine (NE) in the spleen. In the sympathectomized mice, the femoral micro-architecture, bone density and mechanical properties were all impaired compared to the vehicle control mice. The femoral fracture was created in the vehicle or sympathectomized mice. Vehicle mice were locally injected with PBS as a negative control, and the sympathectomized mice were treated with injection of PBS or VIP. VIP expression at the fracture site was significantly decreased in sympathectomized mice. The fracture healing was repressed upon 6-OHDA treatment and rescued by VIP treatment. Micro-CT examination showed that the femoral bone micro-architecture at the fracture sites and mechanical properties were all impaired. Simultaneously, the expression level of osteogenic markers OCN and OPN were reduced in sympathectomized mice compared with vehicle group. While the VIP treatment rescued the repression effects of 6-OHDA on bone remodeling and significantly promoted bone quality and mechanical properties as well as increased osteogenesis marker expression in the sympathectomized mice. VIP administration promoted bone fracture healing by inhibiting bone resorption, making it a putative new alternative treatment strategy for fracture healing.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Niedermair T, Straub RH, Brochhausen C, Grassel S (2020) Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice. Int J Mol Sci 21:405–422PubMedCentralCrossRef Niedermair T, Straub RH, Brochhausen C, Grassel S (2020) Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice. Int J Mol Sci 21:405–422PubMedCentralCrossRef
3.
go back to reference Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM (1992) Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone. Int J Tissue React 14:1–10PubMed Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM (1992) Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone. Int J Tissue React 14:1–10PubMed
4.
go back to reference Jones KB, Mollano AV, Morcuende JA, Cooper RR, Saltzman CL (2004) Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 24:123–132PubMedPubMedCentral Jones KB, Mollano AV, Morcuende JA, Cooper RR, Saltzman CL (2004) Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 24:123–132PubMedPubMedCentral
5.
go back to reference Elefteriou F, Campbell P, Ma Y (2014) Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 94:140–151PubMedCrossRef Elefteriou F, Campbell P, Ma Y (2014) Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 94:140–151PubMedCrossRef
6.
go back to reference Grassel SG (2014) The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 16:485–497PubMedPubMedCentralCrossRef Grassel SG (2014) The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 16:485–497PubMedPubMedCentralCrossRef
7.
go back to reference Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16:1505–1510PubMedCrossRef Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16:1505–1510PubMedCrossRef
8.
go back to reference Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI (2009) β2-Adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys 482:96–103PubMedCrossRef Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI (2009) β2-Adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys 482:96–103PubMedCrossRef
9.
go back to reference Huang HH, Brennan TC, Muir MM, Mason RS (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 220:267–275PubMedCrossRef Huang HH, Brennan TC, Muir MM, Mason RS (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 220:267–275PubMedCrossRef
10.
go back to reference Opolka A, Straub RH, Pasoldt A, Grifka J, Grassel S (2012) Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum 64:729–739PubMedCrossRef Opolka A, Straub RH, Pasoldt A, Grifka J, Grassel S (2012) Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum 64:729–739PubMedCrossRef
11.
go back to reference Niedzwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55:23–36CrossRef Niedzwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55:23–36CrossRef
12.
go back to reference Hill EL, Elde R (1991) Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:469–480PubMedCrossRef Hill EL, Elde R (1991) Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:469–480PubMedCrossRef
13.
go back to reference Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232:868–871PubMedCrossRef Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232:868–871PubMedCrossRef
14.
go back to reference Winding B, Wiltink A, Foged NT (1997) Pituitary adenylyl cyclase-activating polypeptides and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts. Exp Physiol 82:871–886PubMedCrossRef Winding B, Wiltink A, Foged NT (1997) Pituitary adenylyl cyclase-activating polypeptides and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts. Exp Physiol 82:871–886PubMedCrossRef
15.
go back to reference Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH (2001) Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology 142:339–347PubMedCrossRef Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH (2001) Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology 142:339–347PubMedCrossRef
16.
go back to reference Hohmann EL, Levine L, Tashjian AH Jr. (1983) Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3’,5’-monophosphate-dependent mechanism. Endocrinology 112:1233–1239PubMedCrossRef Hohmann EL, Levine L, Tashjian AH Jr. (1983) Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3’,5’-monophosphate-dependent mechanism. Endocrinology 112:1233–1239PubMedCrossRef
17.
go back to reference Lerner UH, Lundberg P, Ransjo M, Persson P, Hakanson R (1994) Helodermin, helospectin, and PACAP stimulate cyclic AMP formation in intact bone, isolated osteoblasts, and osteoblastic cell lines. Calcif Tissue Int 54:284–289PubMedCrossRef Lerner UH, Lundberg P, Ransjo M, Persson P, Hakanson R (1994) Helodermin, helospectin, and PACAP stimulate cyclic AMP formation in intact bone, isolated osteoblasts, and osteoblastic cell lines. Calcif Tissue Int 54:284–289PubMedCrossRef
18.
go back to reference Lundberg P, Lie A, Bjurholm A, Lehenkari PP, Horton MA, Lerner UH, Ransjo M (2000) Vasoactive intestinal peptide regulates osteoclast activity via specific binding sites on both osteoclasts and osteoblasts. Bone 27:803–810PubMedCrossRef Lundberg P, Lie A, Bjurholm A, Lehenkari PP, Horton MA, Lerner UH, Ransjo M (2000) Vasoactive intestinal peptide regulates osteoclast activity via specific binding sites on both osteoclasts and osteoblasts. Bone 27:803–810PubMedCrossRef
19.
go back to reference Shi L, Feng L, Zhu ML, Yang ZM, Wu TY, Xu J, Liu Y, Lin WP, Lo JHT, Zhang JF, Li G (2020) Vasoactive intestinal peptide stimulates bone marrow-mesenchymal stem cells osteogenesis differentiation by activating Wnt/beta-catenin signaling pathway and promotes rat skull defect repair. Stem Cells Dev 29:655–666PubMedCrossRef Shi L, Feng L, Zhu ML, Yang ZM, Wu TY, Xu J, Liu Y, Lin WP, Lo JHT, Zhang JF, Li G (2020) Vasoactive intestinal peptide stimulates bone marrow-mesenchymal stem cells osteogenesis differentiation by activating Wnt/beta-catenin signaling pathway and promotes rat skull defect repair. Stem Cells Dev 29:655–666PubMedCrossRef
20.
go back to reference Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G (2020) Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 83:102077PubMedCrossRef Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G (2020) Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 83:102077PubMedCrossRef
21.
go back to reference Niedermair T, Kuhn V, Doranehgard F, Stange R, Wieskotter B, Beckmann J, Salmen P, Springorum HR, Straub RH, Zimmer A, Grifka J, Grassel S (2014) Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol 38:22–35PubMedCrossRef Niedermair T, Kuhn V, Doranehgard F, Stange R, Wieskotter B, Beckmann J, Salmen P, Springorum HR, Straub RH, Zimmer A, Grifka J, Grassel S (2014) Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol 38:22–35PubMedCrossRef
22.
go back to reference Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, Wadwa M, Schafer MK, Schedlowski M, del Rey A (2014) The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun 38:100–110PubMedCrossRef Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, Wadwa M, Schafer MK, Schedlowski M, del Rey A (2014) The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun 38:100–110PubMedCrossRef
23.
go back to reference Szpunar MJ, Belcher EK, Dawes RP, Madden KS (2016) Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer. Brain Behav Immun 53:223–233PubMedCrossRef Szpunar MJ, Belcher EK, Dawes RP, Madden KS (2016) Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer. Brain Behav Immun 53:223–233PubMedCrossRef
24.
go back to reference Shi L, Feng L, Liu Y, Duan JQ, Lin WP, Zhang JF, Li G (2018) MicroRNA-218 promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing. Calcif Tissue Int 103:227–236PubMedCrossRef Shi L, Feng L, Liu Y, Duan JQ, Lin WP, Zhang JF, Li G (2018) MicroRNA-218 promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing. Calcif Tissue Int 103:227–236PubMedCrossRef
25.
go back to reference Haffner-Luntzer M, Kemmler J, Heidler V, Prystaz K, Schinke T, Amling M, Kovtun A, Rapp AE, Ignatius A, Liedert A (2016) Inhibition of midkine augments osteoporotic fracture healing. PLoS ONE 11:e0159278PubMedPubMedCentralCrossRef Haffner-Luntzer M, Kemmler J, Heidler V, Prystaz K, Schinke T, Amling M, Kovtun A, Rapp AE, Ignatius A, Liedert A (2016) Inhibition of midkine augments osteoporotic fracture healing. PLoS ONE 11:e0159278PubMedPubMedCentralCrossRef
26.
go back to reference Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X, Li G (2017) MiR-503 promotes bone formation in distraction osteogenesis through suppressing Smurf1 expression. Sci Rep 7:409–418PubMedPubMedCentralCrossRef Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X, Li G (2017) MiR-503 promotes bone formation in distraction osteogenesis through suppressing Smurf1 expression. Sci Rep 7:409–418PubMedPubMedCentralCrossRef
27.
go back to reference Chen Y, Lin S, Sun Y, Pan X, Xiao L, Zou L, Ho KW, Li G (2016) Translational potential of ginsenoside Rb1 in managing progression of osteoarthritis. J Orthop Translat 6:27–33PubMedPubMedCentralCrossRef Chen Y, Lin S, Sun Y, Pan X, Xiao L, Zou L, Ho KW, Li G (2016) Translational potential of ginsenoside Rb1 in managing progression of osteoarthritis. J Orthop Translat 6:27–33PubMedPubMedCentralCrossRef
28.
go back to reference Qiao Y, Wang Y, Zhou Y, Jiang F, Huang T, Chen L, Lan J, Yang C, Guo Y, Yan S, Wei Z, Li J (2019) The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 234:7771–7780PubMedCrossRef Qiao Y, Wang Y, Zhou Y, Jiang F, Huang T, Chen L, Lan J, Yang C, Guo Y, Yan S, Wei Z, Li J (2019) The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 234:7771–7780PubMedCrossRef
29.
go back to reference Cutz E, Chan W, Track NS, Goth A, Said SI (1978) Release of vasoactive intestinal polypeptide in mast cells by histamine liberators. Nature 275:661–662PubMedCrossRef Cutz E, Chan W, Track NS, Goth A, Said SI (1978) Release of vasoactive intestinal polypeptide in mast cells by histamine liberators. Nature 275:661–662PubMedCrossRef
30.
go back to reference Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J (1999) Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmunol 93:126–138PubMedCrossRef Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J (1999) Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmunol 93:126–138PubMedCrossRef
31.
go back to reference Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRef Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRef
32.
go back to reference Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRef Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRef
33.
go back to reference Lambert E, Phillips S, Tursunalieva A, Eikelis N, Sari C, Dixon J, Straznicky N, Grima M, Schlaich M, Lambert G (2018) Inverse association between sympathetic nervous system activity and bone mass in middle aged overweight individuals. Bone 111:123–128PubMedCrossRef Lambert E, Phillips S, Tursunalieva A, Eikelis N, Sari C, Dixon J, Straznicky N, Grima M, Schlaich M, Lambert G (2018) Inverse association between sympathetic nervous system activity and bone mass in middle aged overweight individuals. Bone 111:123–128PubMedCrossRef
34.
go back to reference Cherruau M, Facchinetti P, Baroukh B, Saffar JL (1999) Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone 25:545–551PubMedCrossRef Cherruau M, Facchinetti P, Baroukh B, Saffar JL (1999) Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone 25:545–551PubMedCrossRef
35.
go back to reference Pagani F, Sibilia V, Cavani F, Ferretti M, Bertoni L, Palumbo C, Lattuada N, De Luca E, Rubinacci A, Guidobono F (2008) Sympathectomy alters bone architecture in adult growing rats. J Cell Biochem 104:2155–2164PubMedCrossRef Pagani F, Sibilia V, Cavani F, Ferretti M, Bertoni L, Palumbo C, Lattuada N, De Luca E, Rubinacci A, Guidobono F (2008) Sympathectomy alters bone architecture in adult growing rats. J Cell Biochem 104:2155–2164PubMedCrossRef
36.
go back to reference Hu K, Zhou H, Zhang G, Qin R, Hou R, Kong L, Ding Y (2010) The effect of chemical sympathectomy and stress on bone remodeling in adult rats. Neuro Endocrinol Lett 31:807–813PubMed Hu K, Zhou H, Zhang G, Qin R, Hou R, Kong L, Ding Y (2010) The effect of chemical sympathectomy and stress on bone remodeling in adult rats. Neuro Endocrinol Lett 31:807–813PubMed
37.
go back to reference Togari A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58:77–84PubMedCrossRef Togari A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58:77–84PubMedCrossRef
38.
go back to reference Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1999) Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology 140:3177–3182PubMedCrossRef Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1999) Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology 140:3177–3182PubMedCrossRef
39.
go back to reference Takeuchi T, Tsuboi T, Arai M, Togari A (2001) Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol 61:579–586PubMedCrossRef Takeuchi T, Tsuboi T, Arai M, Togari A (2001) Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol 61:579–586PubMedCrossRef
40.
go back to reference Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A (2003) Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 1640:137–142PubMedCrossRef Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A (2003) Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 1640:137–142PubMedCrossRef
41.
go back to reference Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355PubMedCrossRef Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355PubMedCrossRef
42.
go back to reference Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140PubMedCrossRef Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140PubMedCrossRef
43.
go back to reference Roca H, Franceschi RT (2008) Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res 36:1723–1730PubMedPubMedCentralCrossRef Roca H, Franceschi RT (2008) Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res 36:1723–1730PubMedPubMedCentralCrossRef
44.
go back to reference Gu XC, Zhang XB, Hu B, Zi Y, Li M (2016) Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 60:61–66PubMedCrossRef Gu XC, Zhang XB, Hu B, Zi Y, Li M (2016) Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 60:61–66PubMedCrossRef
45.
go back to reference Amano S, Arai M, Goto S, Togari A (2007) Inhibitory effect of NPY on isoprenaline-induced osteoclastogenesis in mouse bone marrow cells. Biochim Biophys Acta 1770:966–973PubMedCrossRef Amano S, Arai M, Goto S, Togari A (2007) Inhibitory effect of NPY on isoprenaline-induced osteoclastogenesis in mouse bone marrow cells. Biochim Biophys Acta 1770:966–973PubMedCrossRef
46.
go back to reference Ding WG, Zhang ZM, Zhang YH, Jiang SD, Jiang LS, Dai LY (2010) Changes of substance P during fracture healing in ovariectomized mice. Regul Pept 159:28–34PubMedCrossRef Ding WG, Zhang ZM, Zhang YH, Jiang SD, Jiang LS, Dai LY (2010) Changes of substance P during fracture healing in ovariectomized mice. Regul Pept 159:28–34PubMedCrossRef
47.
go back to reference Appelt J, Baranowsky A, Jahn D, Yorgan T, Kohli P, Otto E, Farahani SK, Graef F, Fuchs M, Herrera A, Amling M, Schinke T, Frosch KH, Duda GN, Tsitsilonis S, Keller J (2020) The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine 59:102970PubMedPubMedCentralCrossRef Appelt J, Baranowsky A, Jahn D, Yorgan T, Kohli P, Otto E, Farahani SK, Graef F, Fuchs M, Herrera A, Amling M, Schinke T, Frosch KH, Duda GN, Tsitsilonis S, Keller J (2020) The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine 59:102970PubMedPubMedCentralCrossRef
Metadata
Title
Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice
Authors
Liu Shi
Yang Liu
Zhengmeng Yang
Tianyi Wu
Hiu Tung Lo
Jia Xu
Jiajun Zhang
Weiping Lin
Jinfang Zhang
Lu Feng
Gang Li
Publication date
01-07-2021
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2021
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-021-00820-9

Other articles of this Issue 1/2021

Calcified Tissue International 1/2021 Go to the issue