Skip to main content
Top
Published in: Calcified Tissue International 6/2018

Open Access 01-12-2018 | Original Research

Mechanical Loading Differentially Affects Osteocytes in Fibulae from Lactating Mice Compared to Osteocytes in Virgin Mice: Possible Role for Lacuna Size

Authors: Haniyeh Hemmatian, Rozita Jalali, Cornelis M. Semeins, Jolanda M. A. Hogervorst, G. Harry van Lenthe, Jenneke Klein-Nulend, Astrid D. Bakker

Published in: Calcified Tissue International | Issue 6/2018

Login to get access

Abstract

Hormonal changes during lactation are associated with profound changes in bone cell biology, such as osteocytic osteolysis, resulting in larger lacunae. Larger lacuna shape theoretically enhances the transmission of mechanical signals to osteocytes. We aimed to provide experimental evidence supporting this theory by comparing the mechanoresponse of osteocytes in the bone of lactating mice, which have enlarged lacunae due to osteocytic osteolysis, with the response of osteocytes in bone from age-matched virgin mice. The osteocyte mechanoresponse was measured in excised fibulae that were cultured in hormone-free medium for 24 h and cyclically loaded for 10 min (sinusoidal compressive load, 3000 µε, 5 Hz) by quantifying loading-related changes in Sost mRNA expression (qPCR) and sclerostin and β-catenin protein expression (immunohistochemistry). Loading decreased Sost expression by ~ threefold in fibulae of lactating mice. The loading-induced decrease in sclerostin protein expression by osteocytes was larger in lactating mice (55% decrease ± 14 (± SD), n = 8) than virgin mice (33% decrease ± 15, n = 7). Mechanical loading upregulated β-catenin expression in osteocytes in lactating mice by 3.5-fold (± 0.2, n = 6) which is significantly (p < 0.01) higher than the 1.6-fold increase in β-catenin expression by osteocytes in fibulae from virgin mice (± 0.12, n = 4). These results suggest that osteocytes in fibulae from lactating mice with large lacunae may respond stronger to mechanical loading than those from virgin mice. This could indicate that osteocytes residing in larger lacuna show a stronger response to mechanical loading.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kovacs CS (2000-) Calcium Metabolism during Pregnancy and Lactation. [Updated 2015 Mar 10]. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth (MA) Kovacs CS (2000-) Calcium Metabolism during Pregnancy and Lactation. [Updated 2015 Mar 10]. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth (MA)
2.
go back to reference Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190CrossRef Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190CrossRef
3.
go back to reference Klein-Nulend J, Bacabac RG, Bakker AD (2012) Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater 24:278–291CrossRef Klein-Nulend J, Bacabac RG, Bakker AD (2012) Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater 24:278–291CrossRef
4.
go back to reference Wysolmerski JJ (2013) Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 54(2):230–236CrossRef Wysolmerski JJ (2013) Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 54(2):230–236CrossRef
5.
go back to reference Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, Brien CAO, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast. J Biol Chem 282(35):25501–25508CrossRef Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, Brien CAO, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast. J Biol Chem 282(35):25501–25508CrossRef
6.
go back to reference Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL (2006) Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 21(8):1297–1306CrossRef Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL (2006) Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 21(8):1297–1306CrossRef
7.
go back to reference Maycas M, Ardura JA, De Castro LF, Bravo B, Gortázar AR, Esbrit P (2015) Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J Bone Miner Res 30(7):1231–1244CrossRef Maycas M, Ardura JA, De Castro LF, Bravo B, Gortázar AR, Esbrit P (2015) Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J Bone Miner Res 30(7):1231–1244CrossRef
8.
go back to reference Zeng Y, Cowin SC, Weinbaum S (1994) A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann Biomed Eng 22(3):280–292CrossRef Zeng Y, Cowin SC, Weinbaum S (1994) A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann Biomed Eng 22(3):280–292CrossRef
9.
go back to reference Starkebaum W, Pollack SR, Korostoff E (1979) Microelectrode studies of stress-generated potentials in four-point bending of bone. J Biomed Mater Res 13(5):729–751CrossRef Starkebaum W, Pollack SR, Korostoff E (1979) Microelectrode studies of stress-generated potentials in four-point bending of bone. J Biomed Mater Res 13(5):729–751CrossRef
10.
go back to reference Price C, Zhou X, Li W, Wang L (2011) Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 26(2):277–285CrossRef Price C, Zhou X, Li W, Wang L (2011) Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 26(2):277–285CrossRef
11.
go back to reference Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Ann Rev Fluid Mech 41:347–374CrossRef Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Ann Rev Fluid Mech 41:347–374CrossRef
12.
go back to reference Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104(40):15941–15946CrossRef Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104(40):15941–15946CrossRef
13.
go back to reference Nicolella DP, Moravits DE, Galea AM, Bonewald LF, Lankford JL (2006) Osteocyte lacunae tissue strain in cortical bone. J Biomech 39(9):1735–1743CrossRef Nicolella DP, Moravits DE, Galea AM, Bonewald LF, Lankford JL (2006) Osteocyte lacunae tissue strain in cortical bone. J Biomech 39(9):1735–1743CrossRef
14.
go back to reference Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Aging, osteocytes, and mechanotransduction. Curr Osteoporos Rep 15:401–411CrossRef Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Aging, osteocytes, and mechanotransduction. Curr Osteoporos Rep 15:401–411CrossRef
15.
go back to reference van Oers RFM, Wang H, Bacabac RG (2015) Osteocyte shape and mechanical loading. Curr Osteoporos Rep 13:61–66CrossRef van Oers RFM, Wang H, Bacabac RG (2015) Osteocyte shape and mechanical loading. Curr Osteoporos Rep 13:61–66CrossRef
16.
go back to reference Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH (2008) Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech 41(7):1590–1598CrossRef Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH (2008) Round versus flat: bone cell morphology, elasticity, and mechanosensing. J Biomech 41(7):1590–1598CrossRef
17.
go back to reference van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? Bone 45(2):321–329CrossRef van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? Bone 45(2):321–329CrossRef
18.
go back to reference Carter Y, Thomas CDL, Clement JG, Cooper DML (2013) Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. J Struct Biol 183:519–526CrossRef Carter Y, Thomas CDL, Clement JG, Cooper DML (2013) Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. J Struct Biol 183:519–526CrossRef
19.
go back to reference Hemmatian H, Laurent MR, Vanderschueren D, Bakker AD, Klein-Nulend J, van Lenthe GH (2018) Age-related changes in female murine cortical bone microporosity. Bone 113:1–8CrossRef Hemmatian H, Laurent MR, Vanderschueren D, Bakker AD, Klein-Nulend J, van Lenthe GH (2018) Age-related changes in female murine cortical bone microporosity. Bone 113:1–8CrossRef
20.
go back to reference Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM (2014) The influence of age on adaptive bone formation and bone resorption. Biomaterials 35:9290–9301CrossRef Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM (2014) The influence of age on adaptive bone formation and bone resorption. Biomaterials 35:9290–9301CrossRef
21.
go back to reference Holguin N, Brodt MD, Sanchez ME, Silva MJ (2014) Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6. Bone 65:83–91CrossRef Holguin N, Brodt MD, Sanchez ME, Silva MJ (2014) Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6. Bone 65:83–91CrossRef
22.
go back to reference Lynch ME, Main RP, Xu Q, Schmicker TL, Schaffler MB, Wright TM, van der Meulen MC (2011) Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone 49(3):439–446CrossRef Lynch ME, Main RP, Xu Q, Schmicker TL, Schaffler MB, Wright TM, van der Meulen MC (2011) Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone 49(3):439–446CrossRef
23.
go back to reference Callewaert F, Bakker A, Schrooten J, Van Meerbeek B, Verhoeven G, Boonen S et al (2010) Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice. J Bone Miner Res 25(1):124–131CrossRef Callewaert F, Bakker A, Schrooten J, Van Meerbeek B, Verhoeven G, Boonen S et al (2010) Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice. J Bone Miner Res 25(1):124–131CrossRef
24.
go back to reference Maurel DB, Duan P, Farr J, Cheng A-L, Johnson ML, Bonewald LF (2016) Beta-catenin haplo insufficient male mice do not lose bone in response to hindlimb unloading. PLoS ONE 11(7):e0158381CrossRef Maurel DB, Duan P, Farr J, Cheng A-L, Johnson ML, Bonewald LF (2016) Beta-catenin haplo insufficient male mice do not lose bone in response to hindlimb unloading. PLoS ONE 11(7):e0158381CrossRef
25.
go back to reference Robling AG, Niziolek PJ, Baldridge LA et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875CrossRef Robling AG, Niziolek PJ, Baldridge LA et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875CrossRef
26.
27.
go back to reference Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jähn K, Kato S, Wysolmerski J, Bonewald LF (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27(5):1018–1029CrossRef Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jähn K, Kato S, Wysolmerski J, Bonewald LF (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27(5):1018–1029CrossRef
28.
go back to reference Hemmatian H, Laurent MR, Ghazanfari S, Vanderschueren D, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS ONE 12(8):e0182996CrossRef Hemmatian H, Laurent MR, Ghazanfari S, Vanderschueren D, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS ONE 12(8):e0182996CrossRef
29.
go back to reference Carter Y, Thomas CDL, Clement JG, Peele AG, Hannah K, Cooper DML (2013) Variation in osteocyte lacunar morphology and density in the human femur - a synchrotron radiation micro-CT study. Bone 52(1):126–132CrossRef Carter Y, Thomas CDL, Clement JG, Peele AG, Hannah K, Cooper DML (2013) Variation in osteocyte lacunar morphology and density in the human femur - a synchrotron radiation micro-CT study. Bone 52(1):126–132CrossRef
30.
go back to reference Tommasini SM, Trinward A, Acerbo AS, De Carlo F, Miller LM, Judex S (2012) Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT. Bone 50(3):596–604CrossRef Tommasini SM, Trinward A, Acerbo AS, De Carlo F, Miller LM, Judex S (2012) Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT. Bone 50(3):596–604CrossRef
31.
go back to reference McCreadie BR, Hollister SJ, Schaffler MB, Goldstein SA (2004) Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J Biomech 37(4):563–572CrossRef McCreadie BR, Hollister SJ, Schaffler MB, Goldstein SA (2004) Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J Biomech 37(4):563–572CrossRef
32.
go back to reference Fazaeli S, Ghazanfari S, Everts V, Smit TH, Koolstra JH (2016) The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc. Osteoarthr Cartil 24(7):1292–1301CrossRef Fazaeli S, Ghazanfari S, Everts V, Smit TH, Koolstra JH (2016) The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc. Osteoarthr Cartil 24(7):1292–1301CrossRef
33.
go back to reference Berendsen AD, Smit T, Walboomers XF, Everts V, Jansen J, Bronckers T (2009) Three-dimensional loading model for periodontal ligament regeneration in vitro. Tissue Eng C Methods 15:1–10CrossRef Berendsen AD, Smit T, Walboomers XF, Everts V, Jansen J, Bronckers T (2009) Three-dimensional loading model for periodontal ligament regeneration in vitro. Tissue Eng C Methods 15:1–10CrossRef
34.
go back to reference Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107(2):321–327CrossRef Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107(2):321–327CrossRef
35.
go back to reference Warden SJ, Turner CH (2004) Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone 34(2):261–270CrossRef Warden SJ, Turner CH (2004) Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone 34(2):261–270CrossRef
36.
go back to reference Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43(3):452–458CrossRef Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43(3):452–458CrossRef
37.
go back to reference Sinnesael M, Laurent MR, Jardi F, Dubois V, Deboel L, Delisser P, Behets GJ, D’Haese PC, Carmeliet G, Claessens F, Vanderschueren D (2015) Androgens inhibit the osteogenic response to mechanical loading in adult male mice. Endocrinology 156:1343–1353CrossRef Sinnesael M, Laurent MR, Jardi F, Dubois V, Deboel L, Delisser P, Behets GJ, D’Haese PC, Carmeliet G, Claessens F, Vanderschueren D (2015) Androgens inhibit the osteogenic response to mechanical loading in adult male mice. Endocrinology 156:1343–1353CrossRef
38.
go back to reference Moustafa A, Sugiyama T, Saxon LK, Zaman G, Sunters A, Armstrong VJ, Javaheri B, Lanyon LE, Price JS (2009) The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading. Bone 44(5):930–935CrossRef Moustafa A, Sugiyama T, Saxon LK, Zaman G, Sunters A, Armstrong VJ, Javaheri B, Lanyon LE, Price JS (2009) The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading. Bone 44(5):930–935CrossRef
39.
go back to reference Lambert K (1971) The weight-bearing function of the fibula: a strain gauge study. J Bone Joint Surg Am 53(3):507–513CrossRef Lambert K (1971) The weight-bearing function of the fibula: a strain gauge study. J Bone Joint Surg Am 53(3):507–513CrossRef
40.
go back to reference Pathak JL, Bakker AD, Luyten FP, Verschueren P, Lems WF, Nathalie JK (2016) Systemic inflammation affects human osteocyte-specific protein and cytokine expression. Calcif Tissue Int 98(6):596–608CrossRef Pathak JL, Bakker AD, Luyten FP, Verschueren P, Lems WF, Nathalie JK (2016) Systemic inflammation affects human osteocyte-specific protein and cytokine expression. Calcif Tissue Int 98(6):596–608CrossRef
41.
go back to reference Maycas M, McAndrews KA, Sato AY, Pellegrini GG, Brown DM, Allen MR, Plotkin LI, Gortazar AR, Esbrit P, Bellido T (2017) PTHrP-derived peptides restore bone mass and strength in diabetic mice: additive effect of mechanical loading. J Bone Miner Res 32(3):486–497CrossRef Maycas M, McAndrews KA, Sato AY, Pellegrini GG, Brown DM, Allen MR, Plotkin LI, Gortazar AR, Esbrit P, Bellido T (2017) PTHrP-derived peptides restore bone mass and strength in diabetic mice: additive effect of mechanical loading. J Bone Miner Res 32(3):486–497CrossRef
42.
go back to reference Kulkarni RN, Bakker AD, Gruber EV, Chae TD, Veldkamp JBB, Klein-Nulend J, Everts V (2012) MT1-MMP modulates the mechanosensitivity of osteocytes. Biochem Biophys Res Commun 417(2):824–829CrossRef Kulkarni RN, Bakker AD, Gruber EV, Chae TD, Veldkamp JBB, Klein-Nulend J, Everts V (2012) MT1-MMP modulates the mechanosensitivity of osteocytes. Biochem Biophys Res Commun 417(2):824–829CrossRef
43.
go back to reference Lara-Castillo N, Kim-Weroha NA, Kamel MA, Javaheri B, Ellies DL, Krumlauf RE, Thiagarajan G, Johnson ML (2015) In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism. Bone 76:58–66CrossRef Lara-Castillo N, Kim-Weroha NA, Kamel MA, Javaheri B, Ellies DL, Krumlauf RE, Thiagarajan G, Johnson ML (2015) In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism. Bone 76:58–66CrossRef
44.
go back to reference Santos A, Bakker AD, Zandieh-Doulabi B et al (2010) Early activation of the β-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem Biophys Res Commun 391(1):364–369CrossRef Santos A, Bakker AD, Zandieh-Doulabi B et al (2010) Early activation of the β-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem Biophys Res Commun 391(1):364–369CrossRef
45.
go back to reference Tu X, Rhee Y, Condon KW et al (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50(1):209–217CrossRef Tu X, Rhee Y, Condon KW et al (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50(1):209–217CrossRef
46.
go back to reference Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615CrossRef Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615CrossRef
47.
go back to reference Shu R, Bai D, Sheu T, He Y, Yang X, Xue C, He Y, Zhao M, Han X (2017) Sclerostin promotes bone remodeling in the process of tooth movement. PLoS ONE 12(1):e0167312CrossRef Shu R, Bai D, Sheu T, He Y, Yang X, Xue C, He Y, Zhao M, Han X (2017) Sclerostin promotes bone remodeling in the process of tooth movement. PLoS ONE 12(1):e0167312CrossRef
48.
go back to reference Soma S, Iwamoto M, Higuchi Y, Kurisu K (1999) Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 14(4):546–554CrossRef Soma S, Iwamoto M, Higuchi Y, Kurisu K (1999) Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 14(4):546–554CrossRef
49.
go back to reference Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, Iwamoto M (2000) Local and chronic application movement in rats I. J Dent Res 79(9):1717–1724CrossRef Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, Iwamoto M (2000) Local and chronic application movement in rats I. J Dent Res 79(9):1717–1724CrossRef
50.
go back to reference Goldie RS, King GJ (1984) Root resorption and tooth movement in orthodontically-treated, calcium deficient and lactating rats. Am J Orthod 85(5):424–430CrossRef Goldie RS, King GJ (1984) Root resorption and tooth movement in orthodontically-treated, calcium deficient and lactating rats. Am J Orthod 85(5):424–430CrossRef
Metadata
Title
Mechanical Loading Differentially Affects Osteocytes in Fibulae from Lactating Mice Compared to Osteocytes in Virgin Mice: Possible Role for Lacuna Size
Authors
Haniyeh Hemmatian
Rozita Jalali
Cornelis M. Semeins
Jolanda M. A. Hogervorst
G. Harry van Lenthe
Jenneke Klein-Nulend
Astrid D. Bakker
Publication date
01-12-2018
Publisher
Springer US
Published in
Calcified Tissue International / Issue 6/2018
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-018-0463-8

Other articles of this Issue 6/2018

Calcified Tissue International 6/2018 Go to the issue