Skip to main content
Top
Published in: Calcified Tissue International 5/2018

01-11-2018 | Original Research

Deproteinization of Cortical Bone: Effects of Different Treatments

Authors: Frances Y. Su, Siyuan Pang, Yik Tung Tracy Ling, Peter Shyu, Ekaterina Novitskaya, Kyungah Seo, Sofia Lambert, Kimberlin Zarate, Olivia A. Graeve, Iwona Jasiuk, Joanna McKittrick

Published in: Calcified Tissue International | Issue 5/2018

Login to get access

Abstract

Bone is a biological composite material having collagen and mineral as its main constituents. In order to better understand the arrangement of the mineral phase in bone, porcine cortical bone was deproteinized using different chemical treatments. This study aims to determine the best method to remove the protein constituent while preserving the mineral component. Chemicals used were H2O2, NaOCl, NaOH, and KOH, and the efficacy of deproteinization treatments was determined by thermogravimetric analysis and Raman spectroscopy. The structure of the residual mineral parts was examined using scanning electron microscopy. X-ray diffraction was used to confirm that the mineral component was not altered by the chemical treatments. NaOCl was found to be the most effective method for deproteinization and the mineral phase was self-standing, supporting the hypothesis that bone is an interpenetrating composite. Thermogravimetric analyses and Raman spectroscopy results showed the preservation of mineral crystallinity and presence of residual organic material after all chemical treatments. A defatting step, which has not previously been used in conjunction with deproteinization to isolate the mineral phase, was also used. Finally, Raman spectroscopy demonstrated that the inclusion of a defatting procedure resulted in the removal of some but not all residual protein in the bone.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weiner S, Wagner HD (1998) The material bone: Structure mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRef Weiner S, Wagner HD (1998) The material bone: Structure mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRef
3.
go back to reference Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334CrossRef Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334CrossRef
4.
go back to reference Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: A new perspective. Mater Sci Eng R 58:77–116CrossRef Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: A new perspective. Mater Sci Eng R 58:77–116CrossRef
5.
go back to reference Goldberg M, Boskey AL (1996) Lipids and biomineralizations. Prog Histochem Cyto 31:III1–I187 Goldberg M, Boskey AL (1996) Lipids and biomineralizations. Prog Histochem Cyto 31:III1–I187
6.
go back to reference Boskey AL (2001) Bone mineralization. In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, pp 5.1–5.33 Boskey AL (2001) Bone mineralization. In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, pp 5.1–5.33
7.
go back to reference Baselt DR, Revel JP, Baldeschwieler JD (1993) Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J 65:2644–2655CrossRefPubMedCentral Baselt DR, Revel JP, Baldeschwieler JD (1993) Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J 65:2644–2655CrossRefPubMedCentral
8.
9.
go back to reference Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54CrossRefPubMedCentral Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54CrossRefPubMedCentral
10.
go back to reference Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton
11.
go back to reference Barkaoui A, Bettamer A, Hambli R (2011) Failure of mineralized collagen microfibrils using finite element simulation coupled to mechanical quasi-brittle damage. Procedia Eng 10:3185–3190CrossRef Barkaoui A, Bettamer A, Hambli R (2011) Failure of mineralized collagen microfibrils using finite element simulation coupled to mechanical quasi-brittle damage. Procedia Eng 10:3185–3190CrossRef
12.
go back to reference Barkaoui A, Bettamer A, Hambli R (2012) Mechanical behavior of single mineralized collagen fibril using finite element simulation coupled to quasi-brittle damage law. In: ECCOMAS, pp. 1357–1365 Barkaoui A, Bettamer A, Hambli R (2012) Mechanical behavior of single mineralized collagen fibril using finite element simulation coupled to quasi-brittle damage law. In: ECCOMAS, pp. 1357–1365
13.
go back to reference Barkaoui A, Hambli R (2014) Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Eng 17:1590–1601CrossRef Barkaoui A, Hambli R (2014) Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Eng 17:1590–1601CrossRef
14.
go back to reference Barkaoui A, Hambli R, Tavares JMRS (2015) Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation. Comput Methods Biomech Biomed Eng 18:1181–1190CrossRef Barkaoui A, Hambli R, Tavares JMRS (2015) Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation. Comput Methods Biomech Biomed Eng 18:1181–1190CrossRef
15.
go back to reference Schwarcz HP (2015) The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol 46:44–50CrossRefPubMedCentral Schwarcz HP (2015) The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol 46:44–50CrossRefPubMedCentral
16.
go back to reference Benezra Rosen V, Hobbs LW, Spector M (2002) The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23:921–928CrossRefPubMedCentral Benezra Rosen V, Hobbs LW, Spector M (2002) The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23:921–928CrossRefPubMedCentral
17.
go back to reference Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 81:351–361CrossRef Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 81:351–361CrossRef
18.
go back to reference Chen P-Y, McKittrick J (2011) Compressive mechanical properties of demineralized and deproteinized cancellous bone. J Mech Behav Biomed 4:961–973CrossRef Chen P-Y, McKittrick J (2011) Compressive mechanical properties of demineralized and deproteinized cancellous bone. J Mech Behav Biomed 4:961–973CrossRef
19.
go back to reference Novitskaya E, Chen PY, Lee S, Castro-Cesena A, Hirata G, Lubarda VA, McKittrick J (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7:3170–3177CrossRefPubMedCentral Novitskaya E, Chen PY, Lee S, Castro-Cesena A, Hirata G, Lubarda VA, McKittrick J (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7:3170–3177CrossRefPubMedCentral
20.
go back to reference Bigi A, Ripamonti A, Cojazzi G, Pizzuto G, Roveri N, Koch MHJ (1991) Structural analysis of turkey tendon collagen upon removal of the inorganic phase. Int J Biol Macromol 13:110–114CrossRefPubMedCentral Bigi A, Ripamonti A, Cojazzi G, Pizzuto G, Roveri N, Koch MHJ (1991) Structural analysis of turkey tendon collagen upon removal of the inorganic phase. Int J Biol Macromol 13:110–114CrossRefPubMedCentral
21.
go back to reference Venkatesan J, Qian ZJ, Ryu B, Thomas NV, Kim SK (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003CrossRefPubMedCentral Venkatesan J, Qian ZJ, Ryu B, Thomas NV, Kim SK (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003CrossRefPubMedCentral
22.
go back to reference Barakat NAM, Khalil KA, Sheikh FA, Omran AM, Gaihre B, Khil SM, Kim HY (2008) Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28:1381–1387CrossRef Barakat NAM, Khalil KA, Sheikh FA, Omran AM, Gaihre B, Khil SM, Kim HY (2008) Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28:1381–1387CrossRef
23.
go back to reference Barakat NAM, Khil MS, Omran AM, Sheikh FA, Kim HY (2009) Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol 209:3408–3415CrossRef Barakat NAM, Khil MS, Omran AM, Sheikh FA, Kim HY (2009) Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol 209:3408–3415CrossRef
24.
go back to reference Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177CrossRef Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177CrossRef
25.
go back to reference Toque JA, Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW (2007) The effect of sample preparation and calcination temperature on the production of hydroxyapatite from bovine bone powders. In: Ibrahim F, Osman NAA, Usman J, Kadri NA (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006: Biomed 2006, 11–14 December 2006 Kuala Lumpur, Malaysia. Springer, Berlin, pp 152–155 Toque JA, Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW (2007) The effect of sample preparation and calcination temperature on the production of hydroxyapatite from bovine bone powders. In: Ibrahim F, Osman NAA, Usman J, Kadri NA (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006: Biomed 2006, 11–14 December 2006 Kuala Lumpur, Malaysia. Springer, Berlin, pp 152–155
26.
go back to reference Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine-deproteinated bone mineral. Calcif Tissue Res 12:73–90CrossRefPubMedCentral Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine-deproteinated bone mineral. Calcif Tissue Res 12:73–90CrossRefPubMedCentral
27.
go back to reference Bertazzo S, Bertran CA (2008) Effect of hydrazine deproteination on bone mineral phase: a critical view. J Inorg Biochem 102:137–145CrossRefPubMedCentral Bertazzo S, Bertran CA (2008) Effect of hydrazine deproteination on bone mineral phase: a critical view. J Inorg Biochem 102:137–145CrossRefPubMedCentral
28.
go back to reference Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601CrossRefPubMedCentral Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601CrossRefPubMedCentral
29.
go back to reference Tomazic BB, Brown WE, Eanes ED (1993) A critical evaluation of the purification of biominerals by hypochlorite treatment. J Biomed Mater Res A 27:217–225CrossRef Tomazic BB, Brown WE, Eanes ED (1993) A critical evaluation of the purification of biominerals by hypochlorite treatment. J Biomed Mater Res A 27:217–225CrossRef
30.
go back to reference Wynnyckyj C, Omelon S, Willett T, Kyle K, Goldberg H, Grynpas M (2011) Mechanism of bone collagen degradation due to KOH treatment. Biochim. Biophys Acta Gen Subj 1810:192–201CrossRef Wynnyckyj C, Omelon S, Willett T, Kyle K, Goldberg H, Grynpas M (2011) Mechanism of bone collagen degradation due to KOH treatment. Biochim. Biophys Acta Gen Subj 1810:192–201CrossRef
31.
go back to reference Karlsmark T, Danielsen L, Thomsen HK, Aalund O, Nielsen KG, Nielsen O, Genefke IK (1988) The effect of sodium hydroxide and hydrochloric acid on pig dermis. A light microscopic study. Forensic Sci Int 39:227–233CrossRefPubMedCentral Karlsmark T, Danielsen L, Thomsen HK, Aalund O, Nielsen KG, Nielsen O, Genefke IK (1988) The effect of sodium hydroxide and hydrochloric acid on pig dermis. A light microscopic study. Forensic Sci Int 39:227–233CrossRefPubMedCentral
32.
go back to reference Uklejewski R, Winiecki M, Musielak G, Tokłowicz R (2015) Effectiveness of various deproteinization processes of bovine cancellous bone evaluated via mechano-biostructural properties of produced osteoconductive biomaterials. Biotechnol Bioprocess E 20:259–266CrossRef Uklejewski R, Winiecki M, Musielak G, Tokłowicz R (2015) Effectiveness of various deproteinization processes of bovine cancellous bone evaluated via mechano-biostructural properties of produced osteoconductive biomaterials. Biotechnol Bioprocess E 20:259–266CrossRef
34.
go back to reference Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 88:351–361CrossRefPubMedCentral Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 88:351–361CrossRefPubMedCentral
35.
go back to reference Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:403–408 Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:403–408
36.
go back to reference Termine JD, Conn KM, Kleinman HK, Martin GR, Whitson SW (1981) Osteonectin, a mineral and collagen binding-protein of fetal calf bone. Calcif Tissue Int 33:302–302 Termine JD, Conn KM, Kleinman HK, Martin GR, Whitson SW (1981) Osteonectin, a mineral and collagen binding-protein of fetal calf bone. Calcif Tissue Int 33:302–302
37.
go back to reference Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153CrossRefPubMedCentral Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153CrossRefPubMedCentral
38.
go back to reference Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat R 469:2160–2169CrossRef Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat R 469:2160–2169CrossRef
39.
40.
go back to reference Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453CrossRefPubMedCentral Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453CrossRefPubMedCentral
41.
go back to reference Martiniaková M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51:1235–1239CrossRefPubMedCentral Martiniaková M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51:1235–1239CrossRefPubMedCentral
42.
go back to reference Urist MR, Behnam K, Kerendi F, Raskin K, Nuygen TD, Shamie AN, Malinin TI (1997) Lipids closely associated with bone morphogenetic protein (BMP) and induced heterotopic bone formation. With preliminary observations of deficiencies in lipid and osteoinduction in lathyrism in rats. Connect Tissue Res 36:9–20CrossRefPubMedCentral Urist MR, Behnam K, Kerendi F, Raskin K, Nuygen TD, Shamie AN, Malinin TI (1997) Lipids closely associated with bone morphogenetic protein (BMP) and induced heterotopic bone formation. With preliminary observations of deficiencies in lipid and osteoinduction in lathyrism in rats. Connect Tissue Res 36:9–20CrossRefPubMedCentral
43.
go back to reference Fages J, Marty A, Delga C, Condoret JS, Combes D, Frayssinet P (1994) Use of supercritical CO2 for bone delipidation. Biomaterials 15:650–656CrossRefPubMedCentral Fages J, Marty A, Delga C, Condoret JS, Combes D, Frayssinet P (1994) Use of supercritical CO2 for bone delipidation. Biomaterials 15:650–656CrossRefPubMedCentral
46.
go back to reference Almany Magal R, Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading. J Struct Biol 186:253–264CrossRefPubMedCentral Almany Magal R, Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading. J Struct Biol 186:253–264CrossRefPubMedCentral
47.
go back to reference Chittenden M, Najafi AR, Li J, Jasiuk I (2015) Nanoindentation and ash content study of age dependent changes in porcine cortical bone. J Mech Med Biol 15:1550074CrossRef Chittenden M, Najafi AR, Li J, Jasiuk I (2015) Nanoindentation and ash content study of age dependent changes in porcine cortical bone. J Mech Med Biol 15:1550074CrossRef
48.
go back to reference Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90CrossRef Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90CrossRef
49.
go back to reference Mehdawi IM, Young A (2015) Antibacterial composite restorative materials for dental applications. In: Biomaterials and medical device—associated infections. Woodhead Publishing, Oxford, pp 199–221CrossRef Mehdawi IM, Young A (2015) Antibacterial composite restorative materials for dental applications. In: Biomaterials and medical device—associated infections. Woodhead Publishing, Oxford, pp 199–221CrossRef
50.
go back to reference Bagambisa F, Joos U, Schilli W (1993) A scanning electron microscope study of the ultrastructural organization of bone mineral. Cell Mater 3:10 Bagambisa F, Joos U, Schilli W (1993) A scanning electron microscope study of the ultrastructural organization of bone mineral. Cell Mater 3:10
51.
go back to reference Chen P-Y, Novitskaya E, Sun C-Y, McKittrick J, Lopez MI (2014) Toward a better understanding of mineral microstructure in bony tissues. Bioinspired Biomimetic Nanobiomaterials 3:71–84CrossRef Chen P-Y, Novitskaya E, Sun C-Y, McKittrick J, Lopez MI (2014) Toward a better understanding of mineral microstructure in bony tissues. Bioinspired Biomimetic Nanobiomaterials 3:71–84CrossRef
52.
go back to reference Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35:9–16 Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35:9–16
53.
go back to reference Hamed E, Novitskaya EE, Li J, Chen P-Y, Jasiuk I, McKittrick J (2012) Elastic moduli of untreated, demineralized, and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater 8:1080–1092CrossRefPubMedCentral Hamed E, Novitskaya EE, Li J, Chen P-Y, Jasiuk I, McKittrick J (2012) Elastic moduli of untreated, demineralized, and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater 8:1080–1092CrossRefPubMedCentral
54.
go back to reference Di Renzo M, Ellis TH, Sacher E, Stangel I (2001) A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: II. Deproteination Biomater 22:793–797CrossRef Di Renzo M, Ellis TH, Sacher E, Stangel I (2001) A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: II. Deproteination Biomater 22:793–797CrossRef
55.
go back to reference Tas AC (2012) X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr 16:102–106CrossRef Tas AC (2012) X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr 16:102–106CrossRef
57.
go back to reference Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029CrossRefPubMedCentral Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029CrossRefPubMedCentral
58.
go back to reference Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v4 PO4 domain. Calcif Tissue Int 46:384–394CrossRefPubMedCentral Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v4 PO4 domain. Calcif Tissue Int 46:384–394CrossRefPubMedCentral
59.
go back to reference Francis MD, Webb NC (1970) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Int 6:335–342CrossRef Francis MD, Webb NC (1970) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Int 6:335–342CrossRef
60.
go back to reference Lin F-H, Lin C-C, Lu C-M, Liu H-C, Sun J-S, Wang C-Y (1995) Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7 · 10H2O addition. Biomaterials 16:793–802CrossRefPubMedCentral Lin F-H, Lin C-C, Lu C-M, Liu H-C, Sun J-S, Wang C-Y (1995) Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7 · 10H2O addition. Biomaterials 16:793–802CrossRefPubMedCentral
61.
go back to reference Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82CrossRefPubMedCentral Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82CrossRefPubMedCentral
62.
go back to reference Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442CrossRefPubMedCentral Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442CrossRefPubMedCentral
63.
go back to reference Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20CrossRef Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20CrossRef
Metadata
Title
Deproteinization of Cortical Bone: Effects of Different Treatments
Authors
Frances Y. Su
Siyuan Pang
Yik Tung Tracy Ling
Peter Shyu
Ekaterina Novitskaya
Kyungah Seo
Sofia Lambert
Kimberlin Zarate
Olivia A. Graeve
Iwona Jasiuk
Joanna McKittrick
Publication date
01-11-2018
Publisher
Springer US
Published in
Calcified Tissue International / Issue 5/2018
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-018-0453-x

Other articles of this Issue 5/2018

Calcified Tissue International 5/2018 Go to the issue