Skip to main content
Log in

Hydrazine-deproteinated bone mineral

Physical and chemical properties

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

A method is described employing 95% hydrazine which completely deproteinates and slightly dehydrates bone under nearly anhydrous conditions with only moderate heating. This method induced only minor chemical changes and no alterations in structural properties of the mineral phase. Physicochemical data are presented demonstrating that although rat bone crystals more closely resemble synthetic controls made in carbonate-rather than hydroxide-rich media, rat bone apatite cannot be interpreted in terms of known or postulated crystal models in any meaningful fashion. CO 2−3 infrared band assignments made from spectra of whole bone are shown to be in error due to the presence of protein absorption bands. Absorotion of HPO 2−4 was observed in infrared spectra of young rat bone mineral. Detailed X-ray diffraction comparisons of deproteinated rat bone before and after hydrolysis clearly demonstrated the presence of amorphous calcium phosphate. Electron microscopy indicated that very small apatite crystals were present in rat bone which might also contribute to the overall mineral pool amorphous to X-ray diffraction. Electron microscopy also showed domains in rat bone mineral where plate-like apatite crystals maintained a netc-axis orientation despite the removal of their fibrous matrix.

Résumé

Une méthode, utilisant 95% d'hydrazine, permet de déprotéiniser et de déshydrater légèrement l'os dans des conditions presqu'anhydres, avec une élévation de température modérée. Cette méthode ne provoque que des modifications chimiques mineures, sans altération des propriétés structurales de la phase minérale. Les résultats physico-chimiques démontrent que bien que les cristaux d'os de rat sont viosins de cristaux synthétiques témoins constitués dans des milieux, riches en carbonate plutôt qu'en hydroxyde, l'apatite osseux de rat ne parait pas analogue à des modèles cristallins connus ou imaginés. Des déterminations de bande infra-rouge CO 2−3 , réalisées à partir de spectre d'os total, semblent faussées par la présence de bandes d'absorption protéique. L'absorption d'HPO 2−4 est étudiée à l'aide de spectres infra-rouges de minéral osseux de jeunes rats. Des comparaisons détaillées en diffraction par raysons X d'os déprotéinisé de rats, avant et après hydrolyse, démontrent nettement la présence de phosphate de calcium amorphe. La microscopie électronique indique que de petits cristaux d'apatite dans l'os de rat sont susceptibles de contribuer au pool minéral amorphe en diffraction en rayons X. La microscopie électronique montre des plages de minéral osseux de rat où des cristaux d'apatite en forme de plaque, présentent une maille cristalline avec axe C malgré l'élimination de leur matrice fibreuse.

Zusammenfassung

Es wird eine Methode beschrieben, wobei durch Anwendung von 95% Hydrazin ohne Wasserzugabe und mit nur geringem Erhitzen dem Knochen das gesamte Protein und ein kleiner Teil des Wassers entzogen wird. Diese Methode führte nur zu geringen chemischen Veränderungen und veränderte die strukturellen Eigenschaften der Mineralphase in keiner Weise. Physikochemische Daten wurden erbracht, welche zeigen, daß — obwohl die Kristalle von Rattenknochen den synthetischen Kontrollen (in Karbonat- und nicht hydroxydreichen Medien hergestellt) eher gleichen — Apatit aus Rattenknochen nicht auf sinnvolle Weise mittels bekannten oder postulierten Kristallmodellen interpretiert werden kann. CO 2−3 -Infrarotbandenzuteilungen, welche von Spektren aus dem Gesamtknochen gemacht wurden, geben wegen der Anwesenheit von Proteinabsorptionsbändern falsche Resultate. Die Absorption von HPO 2−4 wurde in den Infrarotspektren von Knochenmineral aus jungen Ratten beobachtet. Ein Vergleich der detaillierten Röntgendiffraktion von deproteinisiertem Rattenknochen vor und nach der Hydrolyse wies deutlich auf die Anwesenheit von amorphem Calciumphosphat hin. Die Elektronenmikroskopie zeigte kleine Apatitkristalle im Rattenknochen, welche zum Gesamtmineralpool beitragen könnten, der bei der Röntgendiffraktion amorph ist. Die Elektronenmikroskopie zeigte auch Gebiete im Rattenknochenmineral, wo plättchenartige Apatitkristalle eine deutlichec-Achsenorientierung beibehielten, obwohl ihre fibröse Matrix entfernt worden war.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akabori, S., Ohno, K., Navita, K.: On the hydrolysis of proteins and peptides: a method for the characterization of carboxy-terminal amino acids in proteins. Bull. Chem. Soc. Japan25, 214–218 (1952).

    Google Scholar 

  • Alexander, L. E.: X-ray diffraction methods in polymer science, p. 137–197. New York: John Wiley and Sons, Interscience 1969.

    Google Scholar 

  • Armstrong, W. D., Singer, L.: Composition and constitution of the mineral phase of bone. Clin. Orthop.38, 179–190 (1967).

    Google Scholar 

  • Baxter, J. D., Biltz, R. M., Pellegrino, E. D.: The physical state of bone carbonate: a comparative infrared study in several mineralized tissues. Yale J. Biol. Med.38, 456–470 (1966).

    PubMed  Google Scholar 

  • Beer, M., Sutherland, G. B. B. M., Tanner, K. N., Wood, D. L.: Infrared spectra and structure of proteins. Proc. Roy. Soc. (London)249A, 147–172 (1959).

    Google Scholar 

  • Bienenstock, A., Posner, A. S.: Calculation of the x-ray intensities from arrays of small crystallites of hydroxyapatite. Arch. Biochem. Biophys.124, 604–607 (1968).

    PubMed  Google Scholar 

  • Doty, S. B., Mathews, R. S.: Electron microscopic and histochemical investigation of osteogenesis imperfecta tarda. Clin. Orthop.80, 191–201 (1971).

    PubMed  Google Scholar 

  • Eanes, E. D., Gillessen, I. H., Posner, A. S.: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).

    Google Scholar 

  • Eanes, E. D., Posner, A. S.: Intermediate phases in the basic solution preparation of alkaline earth phosphates. Calcif. Tiss. Res.2, 38–48 (1968).

    Google Scholar 

  • Eastoe, J. E.: The chemical composition of bone. In: Biochemists' handbook (C. Long, ed.), p. 715–720. Princeton: Van Nostrand 1961.

    Google Scholar 

  • Elliott, J. C.: The interpretation of the infrared absorption spectra of some carbonate-containing apatites. In: Tooth enamel. Its composition, properties and fundamental structure (M. V. Stack and R. W. Fearnhead, eds.), p. 20–22 and 50–58. Bristol: John Wright and Sons, LTD. 1965.

    Google Scholar 

  • Emerson, W. H., Fischer, E. E.: The infra-red absorption spectra of carbonate in calcified tissues. Arch. oral Biol.7, 671–683 (1962).

    Google Scholar 

  • Fowler, B. O.: Infrared spectra of apatites. In: Internat. Symposium on structural properties of hydroxyapatite and related compounds (R. A. Young and W. E. Brown, eds.), chapter 7. New York: Gordon and Breach. In press, 1968.

    Google Scholar 

  • Fowler, B. O., Moreno, E. C., Brown, W. E.: Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. oral Biol.11, 477–492 (1966).

    PubMed  Google Scholar 

  • Furedi, H., Walton, A. G.: Transmission and attenuated total reflection (ATR) infrared spectra of bone and collagen. Appl. Spectroscopy22, 23–26 (1968).

    Google Scholar 

  • Gee, A., Deitz, V. R.: Determination of phosphate by differential spectrophotometry. Analyt. Chem.25, 1320–1324 (1953).

    Google Scholar 

  • Gee, A., Deitz, V. R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphates. J. Amer. chem. Soc.77, 2961–2965 (1955).

    Google Scholar 

  • Glimcher, M. J., Krane, S. M.: The organization and structure of bone and the mechanism of calcification. In: Treatise on collagen, vol. 2B (B. S. Gould, ed.), p. 68–251. New York: Academic Press 1968.

    Google Scholar 

  • Greenfield, D. J., Eanes, E. D.: Formation chemistry of amorphous calcium phosphates prepared from carbonate containing solutions. Calcif. Tiss. Res.9, 152–162 (1972).

    Google Scholar 

  • Harper, R. A., Posner, A. S.: Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. exp. Biol. (N. Y.)122, 137–142 (1966).

    Google Scholar 

  • Höhling, H. J., Kreilos, R., Neubauer, G., Boyde, A.: Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Z. Zellforsch.122, 36–52 (1971).

    PubMed  Google Scholar 

  • Huc, A., Sanejuoand, J.: Étude du spectre infrarouge du collagène acidosoluble. Biochim. biophys. Acta (Amst.)154, 408–410 (1968).

    Google Scholar 

  • Itoh, K., Shimanouchi, T., Oya, M.: Far infrared spectra of poly (−α-amino acids) with basic alkyl group side chains. Biopolymers7, 649–658 (1969).

    Google Scholar 

  • LeGeros, R. Z., Trautz, O. R., Klein, E., LeGeros, J. P.: Two types of carbonate substitution in the apatite structure, Experientia (Basel)24, 5–7 (1969).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951).

    PubMed  Google Scholar 

  • Miller, E. J., Martin, G. R., Piez, K., Powers, M. J.: Characterization of chick bone collagen and compositional changes associated with maturation. J. biol. Chem.242, 5481–5489 (1967).

    PubMed  Google Scholar 

  • Miyazawa, T.: Infrared spectra and helical conformation. In: Poly-α-amino acids, vol 1 (G. Fasman, ed.), p. 69–103. New York: Marcel Dekker 1967.

    Google Scholar 

  • Murphy, A. P., McNeil, G. L., Neal, K. J.: Ultramicrotome for hard tissue. Rev. Sci. Instr.38, 921–924 (1967).

    Google Scholar 

  • Niu, C. I., Fraenkel-Conrat, H.: Determination of C-terminal amino acids and peptides by hydrazinolysis. J. Amer. chem. Soc.77, 5882–5885 (1955).

    Google Scholar 

  • Nylen, M. U., Eanes, E. D., Termine, J. D.: Molecular and ultrastructural studies of noncrystalline calcium phosphates. Calcif. Tiss. Res.9, 95–108 (1972).

    Google Scholar 

  • Ohno, K.: On the structure of lysozyme. III. On the carboxyl-terminal peptide. J. Biochem. (Japan)42, 615–625 (1955).

    Google Scholar 

  • Orr, S. F. D.: Infra-red spectroscopic studies of some polysaccharides. Biochim. biophys. Acta (Amst.)14, 173–181 (1954).

    Google Scholar 

  • Peckham, S., Losee, F. L., Ettleman, I.: Ethylenediamine versus potassium hydroxideglycol in the removal of organic matter from dentine. J. dent. Res.35, 947–949 (1956).

    PubMed  Google Scholar 

  • Quinaux, N., Richelle, L. J.: X-ray diffraction and infrared analysis of bone specific gravity fractions in the growing rat. Israel J. med. Sci.3, 677–690 (1967).

    Google Scholar 

  • Ramachandran, G. N.: Structure of collagen at the molecular level. In: Treatise on collagen, vol.1 (G. N. Ramachandran, ed.), p. 185–206. New York: Academic Press 1967.

    Google Scholar 

  • Scott, D. B.: The crystalline component of dental enamel. In: Proceedings, fourth international congress of electron microscopy, vol. 2, p. 348–351. Berlin-Heidelberg-New York: Springer 1960.

    Google Scholar 

  • Spurr, A. R.: A low-viscisity epoxy resin medium for electron microscopy. J. Ultrastruct. Res.26, 31–43 (1969).

    PubMed  Google Scholar 

  • Stutman, J. M., Termine, J. D., Posner, A. S.: Vibrational spectra and structure of the phosphate ion in some calcium phosphates. Trans. N.Y. Acad. Sci.27, 669–675 (1965).

    PubMed  Google Scholar 

  • Susi, H.: Infrared spectra of biological macromolecules and related systems. In: Structure and stability of biological macromolecules (S. N. Timasheff and G. D. Fasman, eds.), p. 575–663. New York: Marcel Dekker 1969.

    Google Scholar 

  • Swedlow, D. B., Harper, R. A., Katz, J. L.: Evaluation of a new preparative technique for bone examination in the SEM. In: Scanning electron microscopy 1972 (part III). Proceedings, workshop on biological scanning electron microscopy, p. 335–342. Chicago: IIT Research Institute 1972.

    Google Scholar 

  • Termine, J. D., Eanes, E. D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tiss. Res.10, 171–197 (1972).

    Google Scholar 

  • Termine, J. D., Eanes, E. D., Ein, D., Glenner, G. G.: Infrared spectroscopy of human amyloid fibrils and immunoglobulin proteins. Biopolymers11, 1103–1113 (1972).

    PubMed  Google Scholar 

  • Termine, J. D., Posner, A. S.: Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science153, 1523–1525 (1966).

    PubMed  Google Scholar 

  • Termine, J. D., Posner, A. S.: Amorphous/crystalline interrelationships in bone mineral. Calcif. Tiss. Res.1, 8–23 (1967).

    Google Scholar 

  • Trombe, J. C., Bonel, G., Montel, G.: Sur les apatites carbonatées préparées à haute tempèrature. Bull. Soc. Chim. Fr. (no special) 2e trimestre, 1708–1712 (1968).

  • Williams, J. B., Irvine, J. W.: Preparation of the inorganic matrix of bone. Science119, 771–772 (1954).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Termine, J.D., Eanes, E.D., Greenfield, D.J. et al. Hydrazine-deproteinated bone mineral. Calc. Tis Res. 12, 73–90 (1973). https://doi.org/10.1007/BF02013723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013723

Key words

Navigation