Skip to main content
Top

01-09-2018 | Original Research

Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume

Authors: Alyson Morse, Tegan L. Cheng, Aaron Schindeler, Michelle M. McDonald, Sindhu T. Mohanty, Michaela Kneissel, Ina Kramer, David G. Little

Published in: Calcified Tissue International | Issue 3/2018

Login to get access

Abstract

Dickkopf-1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway and decreased expression of either results in increased bone formation and mass. As both affect the same signaling pathway, we aimed to elucidate the redundancy and/or compensation of sclerostin and DKK1. Weekly sclerostin antibody (Scl-Ab) was used to treat 9-week-old female Dkk1 KO (Dkk1−/−:Wnt3+/−) mice and compared to Scl-Ab-treated wild-type mice as well as vehicle-treated Dkk1 KO and wild-type animals. While Wnt3 heterozygote (Wnt3+/−) mice show no bone phenotype, Scl-Ab and vehicle-treated control groups of this genotype were included. Specimens were harvested after 3 weeks for microCT, bone histomorphometry, anti-sclerostin immunohistochemistry, and biomechanical testing. Scl-Ab enhanced bone anabolism in all treatment groups, but with synergistic enhancement seen in the cancellous compartment of Dkk1 KO mice (bone volume + 55% Dkk1 KO p < 0.01; + 22% wild type p < 0.05). Scl-Ab treatment produced less marked increases in cortical bone of the tibiae, with anabolic effects similar across genotypes. Mechanical testing confirmed that Scl-Ab improved strength across all genotypes; however, no enhancement was seen within Dkk1 KO mice. Dynamic bone labeling showed that Scl-Ab treatment was associated with increased bone formation, regardless of genotype. Immunohistochemical staining for sclerostin protein indicated no differences in the Dkk1 KO mice, indicating that the increased Wnt signaling associated with DKK1 deficiency was not compensated by upregulation of sclerostin protein. These data suggest complex interactions between Wnt signaling factors in bone, but critically illustrate synergy between DKK1 deficiency and Scl-Ab treatment. These data support the application of dual-targeted therapeutics in the modulation of bone anabolism.
Appendix
Available only for authorised users
Literature
2.
go back to reference Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875CrossRefPubMed Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875CrossRefPubMed
3.
go back to reference Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39(4):754–766CrossRefPubMed Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39(4):754–766CrossRefPubMed
4.
go back to reference Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ et al (2010) Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11(2):161–171CrossRefPubMedPubMedCentral Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ et al (2010) Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11(2):161–171CrossRefPubMedPubMedCentral
5.
go back to reference Yao GQ, Wu JJ, Troiano N, Insogna K (2011) Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. J Bone Miner Metab 29(2):141–148CrossRefPubMed Yao GQ, Wu JJ, Troiano N, Insogna K (2011) Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. J Bone Miner Metab 29(2):141–148CrossRefPubMed
6.
go back to reference Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM et al (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15(7):928–935CrossRefPubMedPubMedCentral Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM et al (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15(7):928–935CrossRefPubMedPubMedCentral
7.
go back to reference Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C et al (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res 26(5):1035–1046CrossRefPubMed Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C et al (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res 26(5):1035–1046CrossRefPubMed
8.
go back to reference Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276CrossRefPubMedPubMedCentral Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276CrossRefPubMedPubMedCentral
9.
go back to reference MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X et al (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41(3):331–339CrossRefPubMedPubMedCentral MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X et al (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41(3):331–339CrossRefPubMedPubMedCentral
10.
go back to reference Kramer I, Kneissel M (2008) The high bone mass phenotype of Sost deficient mice is characterized by progressive increase in bone thickness, mineralization and predicted cortical bone strength in a gene dosage unrelated manner. Bone 42(Supplement 1):S57CrossRef Kramer I, Kneissel M (2008) The high bone mass phenotype of Sost deficient mice is characterized by progressive increase in bone thickness, mineralization and predicted cortical bone strength in a gene dosage unrelated manner. Bone 42(Supplement 1):S57CrossRef
11.
go back to reference Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869CrossRefPubMed Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869CrossRefPubMed
12.
go back to reference McDonald MM, Morse A, Schindeler A, Mikulec K, Peacock L, Cheng T et al (2017) Homozygous Dkk1 knockout mice exhibit high bone mass phenotype due to increased bone formation. Calcif Tissue Int 102:105–116CrossRefPubMed McDonald MM, Morse A, Schindeler A, Mikulec K, Peacock L, Cheng T et al (2017) Homozygous Dkk1 knockout mice exhibit high bone mass phenotype due to increased bone formation. Calcif Tissue Int 102:105–116CrossRefPubMed
13.
go back to reference Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A et al (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110(2):144–152CrossRefPubMed Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A et al (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110(2):144–152CrossRefPubMed
14.
go back to reference Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543CrossRefPubMed Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543CrossRefPubMed
15.
go back to reference Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H et al (2005) Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90(12):6392–6395CrossRefPubMed Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H et al (2005) Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90(12):6392–6395CrossRefPubMed
16.
go back to reference Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D et al (2013) Reversing LRP5-dependent osteoporosis and SOST-deficiency induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res 29:29–42CrossRef Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D et al (2013) Reversing LRP5-dependent osteoporosis and SOST-deficiency induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res 29:29–42CrossRef
17.
go back to reference van Lierop A, Moester M, Hamdy N, Papapoulos S (2013) Serum dickkopf 1 levels in sclerostin deficiency. J Clin Endocrinol Metab 99:E252–E256CrossRefPubMed van Lierop A, Moester M, Hamdy N, Papapoulos S (2013) Serum dickkopf 1 levels in sclerostin deficiency. J Clin Endocrinol Metab 99:E252–E256CrossRefPubMed
18.
go back to reference Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B et al (2016) A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 7:11505CrossRefPubMedPubMedCentral Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B et al (2016) A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 7:11505CrossRefPubMedPubMedCentral
19.
go back to reference Ominsky MSR, Jolette J et al (2012) Long-term sclerostin antibody treatment in cynomolgus monkeys: sustained improvements in vertebral microarchitecture and bone strength following a temporal increase in cancellous bone formation. J Bone Miner Res 27(S1):S124 Ominsky MSR, Jolette J et al (2012) Long-term sclerostin antibody treatment in cynomolgus monkeys: sustained improvements in vertebral microarchitecture and bone strength following a temporal increase in cancellous bone formation. J Bone Miner Res 27(S1):S124
20.
go back to reference van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N et al (2011) Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26(12):2804–2811CrossRefPubMed van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N et al (2011) Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26(12):2804–2811CrossRefPubMed
21.
go back to reference Lewis SL, Khoo PL, De Young RA, Steiner K, Wilcock C, Mukhopadhyay M et al (2008) Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135(10):1791–1801CrossRefPubMed Lewis SL, Khoo PL, De Young RA, Steiner K, Wilcock C, Mukhopadhyay M et al (2008) Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135(10):1791–1801CrossRefPubMed
22.
go back to reference Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1(3):423–434CrossRefPubMed Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1(3):423–434CrossRefPubMed
23.
go back to reference Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22(4):361–365CrossRefPubMed Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22(4):361–365CrossRefPubMed
24.
go back to reference Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ et al (2017) Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J Bone Miner Res 32(2):360–372CrossRefPubMed Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ et al (2017) Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J Bone Miner Res 32(2):360–372CrossRefPubMed
25.
go back to reference Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG (2017) Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading. J Bone Miner Res 33:486–498CrossRefPubMed Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG (2017) Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading. J Bone Miner Res 33:486–498CrossRefPubMed
26.
go back to reference Morse A, McDonald MM, Kelly NH, Melville KM, Schindeler A, Kramer I et al (2014) Mechanical load increases in bone formation via a sclerostin-independent pathway. J Bone Miner Res 29(11):2456–2467CrossRefPubMedPubMedCentral Morse A, McDonald MM, Kelly NH, Melville KM, Schindeler A, Kramer I et al (2014) Mechanical load increases in bone formation via a sclerostin-independent pathway. J Bone Miner Res 29(11):2456–2467CrossRefPubMedPubMedCentral
27.
go back to reference Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross T, Lanyon L et al (2011) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23:1–10 Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross T, Lanyon L et al (2011) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23:1–10
28.
go back to reference Lynch ME, Main RP, Xu Q, Walsh DJ, Schaffler MB, Wright TM et al (2010) Cancellous bone adaptation to tibial compression is not sex dependent in growing mice. J Appl Physiol 109(3):685–691CrossRefPubMedPubMedCentral Lynch ME, Main RP, Xu Q, Walsh DJ, Schaffler MB, Wright TM et al (2010) Cancellous bone adaptation to tibial compression is not sex dependent in growing mice. J Appl Physiol 109(3):685–691CrossRefPubMedPubMedCentral
29.
go back to reference Fritton JC, Myers ER, Wright TM, van der Meulen MC (2005) Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 36(6):1030–1038CrossRefPubMed Fritton JC, Myers ER, Wright TM, van der Meulen MC (2005) Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 36(6):1030–1038CrossRefPubMed
30.
go back to reference Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D et al (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26(11):2610–2621CrossRefPubMed Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D et al (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26(11):2610–2621CrossRefPubMed
31.
go back to reference McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420CrossRefPubMed McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420CrossRefPubMed
32.
go back to reference Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J et al (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30(2):216–224CrossRefPubMed Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J et al (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30(2):216–224CrossRefPubMed
33.
go back to reference Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543CrossRefPubMed Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543CrossRefPubMed
34.
go back to reference Holdsworth G, Greenslade K, Jose J, Stencel Z, Kirby H, Moore A et al (2017) Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone 107:93–103CrossRefPubMed Holdsworth G, Greenslade K, Jose J, Stencel Z, Kirby H, Moore A et al (2017) Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone 107:93–103CrossRefPubMed
35.
go back to reference McClung MRCA., Brown JP, Diez-Perez A, Resch H, Caminis J, Bolognese MA, Goemaere S, Bone HG, Zanchetta JR, Maddox J, Rosen O, Bray S, Grauer A (2015) OP0251 effects of 2 years of treatment with romosozumab followed by 1 year of denosumab or placebo in postmenopausal women with low bone mineral density. Ann Rheum Dis 74(Suppl 2):166–167CrossRef McClung MRCA., Brown JP, Diez-Perez A, Resch H, Caminis J, Bolognese MA, Goemaere S, Bone HG, Zanchetta JR, Maddox J, Rosen O, Bray S, Grauer A (2015) OP0251 effects of 2 years of treatment with romosozumab followed by 1 year of denosumab or placebo in postmenopausal women with low bone mineral density. Ann Rheum Dis 74(Suppl 2):166–167CrossRef
Metadata
Title
Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume
Authors
Alyson Morse
Tegan L. Cheng
Aaron Schindeler
Michelle M. McDonald
Sindhu T. Mohanty
Michaela Kneissel
Ina Kramer
David G. Little
Publication date
01-09-2018
Publisher
Springer US
Published in
Calcified Tissue International / Issue 3/2018
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-018-0420-6