Skip to main content
Top
Published in: Calcified Tissue International 2/2017

01-08-2017 | Original Research

Cortical Histomorphometry of the Human Humerus During Ontogeny

Authors: Rosie Pitfield, Justyna J. Miszkiewicz, Patrick Mahoney

Published in: Calcified Tissue International | Issue 2/2017

Login to get access

Abstract

Modeling and remodeling are two key determinants of human skeletal growth though little is known about the histomorphometry of cortical bone during ontogeny. In this study, we examined the density and geometric properties of primary and secondary osteons (osteon area and diameter, vascular canal area and diameter) in subperiosteal cortical bone from the human humerus (n = 84) between birth and age 18 years. Sections were removed from the anterior midshaft aspect of humeri from skeletons. Age-at-death was reconstructed using standard osteological techniques. Analyses revealed significant correlation between the histomorphometric variables and age. Higher densities of primary osteons occurred between infancy and 7 years of age but were almost completely replaced by secondary osteons after 14 years of age. The geometry of primary osteons was less clearly related to age. Secondary osteons were visible after 2 years of age and reached their greatest densities in the oldest individuals. Osteon size was positively but weakly influenced by age. Our data imply that modeling and remodeling are age-dependent processes that vary markedly from birth to adulthood in the human humerus.
Literature
1.
go back to reference Goldman HM, McFarlin SC, Cooper DML et al (2009) Ontogenetic patterning of cortical bone microstructure and geometry at the human mid-shaft femur. Anat Rec 292:48–64. doi:10.1002/ar.20778 CrossRef Goldman HM, McFarlin SC, Cooper DML et al (2009) Ontogenetic patterning of cortical bone microstructure and geometry at the human mid-shaft femur. Anat Rec 292:48–64. doi:10.​1002/​ar.​20778 CrossRef
2.
go back to reference Maggiano IS, Maggiano CM, Tiesler VG et al (2015) Drifting diaphyses: Asymmetry in diametric growth and adaption along the humeral and femoral length. Anat Rec 298:1689–1699. doi:10.1002/ar.23201 CrossRef Maggiano IS, Maggiano CM, Tiesler VG et al (2015) Drifting diaphyses: Asymmetry in diametric growth and adaption along the humeral and femoral length. Anat Rec 298:1689–1699. doi:10.​1002/​ar.​23201 CrossRef
4.
go back to reference Maggiano CM (2012) Histomorphometry of humeral primary bone: evaluating the endosteal lamellar pocket as an indicator of modeling drift in archaeological and modern skeletal samples. PhD Dissertation Maggiano CM (2012) Histomorphometry of humeral primary bone: evaluating the endosteal lamellar pocket as an indicator of modeling drift in archaeological and modern skeletal samples. PhD Dissertation
5.
go back to reference Maggiano CM, Maggiano IS, Tiesler VG et al (2016) Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus. J Anat 228:190–202. doi:10.1111/joa.12383 CrossRefPubMed Maggiano CM, Maggiano IS, Tiesler VG et al (2016) Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus. J Anat 228:190–202. doi:10.​1111/​joa.​12383 CrossRefPubMed
8.
go back to reference Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthr 23:149–163CrossRef Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthr 23:149–163CrossRef
10.
go back to reference Martin RB, Burr DB, Sharkey NA, Fyhrie DP (2015) Skeletal tissue mechanics. Springer, Berlin Martin RB, Burr DB, Sharkey NA, Fyhrie DP (2015) Skeletal tissue mechanics. Springer, Berlin
11.
go back to reference Ogden JA (2006) Skeletal injury in the child. Springer, Berlin Ogden JA (2006) Skeletal injury in the child. Springer, Berlin
12.
go back to reference Maggiano CM (2011) Making the mold: a microstructural perspective on bone Modeling during growth and mechanical adaption. In: Crowder C, Stout SD (eds) Bone histology: An anthropological perspective. CRC Press, Boca Raton, p 45–90CrossRef Maggiano CM (2011) Making the mold: a microstructural perspective on bone Modeling during growth and mechanical adaption. In: Crowder C, Stout SD (eds) Bone histology: An anthropological perspective. CRC Press, Boca Raton, p 45–90CrossRef
13.
go back to reference Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton
15.
go back to reference De Margerie E, Robin J-P, Verrier D et al (2004) Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J Exp Biol 207:869–879. doi:10.1242/jeb.00841 CrossRefPubMed De Margerie E, Robin J-P, Verrier D et al (2004) Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J Exp Biol 207:869–879. doi:10.​1242/​jeb.​00841 CrossRefPubMed
19.
21.
go back to reference van Oers RF, Ruimerman R, Tanck E et al (2008) A unified theory for osteonal and hemi-osteonal remodelling. Bone 42(2):250–259CrossRefPubMed van Oers RF, Ruimerman R, Tanck E et al (2008) A unified theory for osteonal and hemi-osteonal remodelling. Bone 42(2):250–259CrossRefPubMed
23.
go back to reference Stout S, Crowder C (2011) Bone remodeling, histomorphology, and histomorphometry. In: Crowder C, Stout S (eds) Bone histology: an anthropological perspective. CRC Press, Boca Raton, p 23–44CrossRef Stout S, Crowder C (2011) Bone remodeling, histomorphology, and histomorphometry. In: Crowder C, Stout S (eds) Bone histology: an anthropological perspective. CRC Press, Boca Raton, p 23–44CrossRef
27.
go back to reference Storm T, Steiniche T, Thamsborg G, Melsen F (1993) Changes in bone histomorphometry after long-term treatment with intermittent, cyclic etidronate for postmenopausal osteoporosis. J Bone Miner Res 8:199–208. doi:10.1002/jbmr.5650080211 CrossRefPubMed Storm T, Steiniche T, Thamsborg G, Melsen F (1993) Changes in bone histomorphometry after long-term treatment with intermittent, cyclic etidronate for postmenopausal osteoporosis. J Bone Miner Res 8:199–208. doi:10.​1002/​jbmr.​5650080211 CrossRefPubMed
28.
go back to reference Duncombe J, Batterly N (1785) The history and antiquities of the three archiepiscopal hospitals and other charitable foundations at and near Canterbury. Bibliotheca Topographica Britannica No XXX. London Duncombe J, Batterly N (1785) The history and antiquities of the three archiepiscopal hospitals and other charitable foundations at and near Canterbury. Bibliotheca Topographica Britannica No XXX. London
29.
go back to reference Mays S, Elders J, Humphrey L, White W, Marshall P (2013) Science and the Dead: a guidelines for the destructive sampling of archaeological human remains for scientific analysis. Advisory panel on the archaeology of burials in England. English Heritage Mays S, Elders J, Humphrey L, White W, Marshall P (2013) Science and the Dead: a guidelines for the destructive sampling of archaeological human remains for scientific analysis. Advisory panel on the archaeology of burials in England. English Heritage
30.
go back to reference Miszkiewicz JJ, Mahoney P (2016) Ancient human bone microstructure in Medieval England: comparisons between two socio-economic groups. Anat Rec 299:42–59. doi:10.1002/ar.23285 CrossRef Miszkiewicz JJ, Mahoney P (2016) Ancient human bone microstructure in Medieval England: comparisons between two socio-economic groups. Anat Rec 299:42–59. doi:10.​1002/​ar.​23285 CrossRef
32.
go back to reference Al Qahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: The London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490. doi:10.1002/ajpa.21258 CrossRef Al Qahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: The London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490. doi:10.​1002/​ajpa.​21258 CrossRef
33.
go back to reference Scheuer L, Black S (2000) Development and ageing of the juvenile skeleton. In: Cox M, Mays S (eds) Hum Osteol Archaeol Forensic Sci. Greenwich Medical Media Ltd, London, pp 9–21 Scheuer L, Black S (2000) Development and ageing of the juvenile skeleton. In: Cox M, Mays S (eds) Hum Osteol Archaeol Forensic Sci. Greenwich Medical Media Ltd, London, pp 9–21
34.
go back to reference Crowder C, Stout S (2011) Bone histology: an anthropological perspective. CRC Press, Boca Raton Crowder C, Stout S (2011) Bone histology: an anthropological perspective. CRC Press, Boca Raton
35.
36.
go back to reference Pfeiffer S (1998) Variability in osteon size in recent human populations. Am J Phys Anthropol 106:219–227CrossRefPubMed Pfeiffer S (1998) Variability in osteon size in recent human populations. Am J Phys Anthropol 106:219–227CrossRefPubMed
37.
go back to reference Goulding A (2007) Risk factors for fractures in normally active children and adolescents. In: Daly R, P°etit M (eds) Optimizing bone mass and strength; the role of physical activity and nutrition during growth. Med Sport Sci, vol 51. Karger, Basel, p 102–120. doi:10.1159/000103007 CrossRef Goulding A (2007) Risk factors for fractures in normally active children and adolescents. In: Daly R, P°etit M (eds) Optimizing bone mass and strength; the role of physical activity and nutrition during growth. Med Sport Sci, vol 51. Karger, Basel, p 102–120. doi:10.​1159/​000103007 CrossRef
38.
go back to reference Carter DR, Spengler DM (1978) Mechanical properties and composition of cortical bone. Clin Orthop Relat Res 135:192–217 Carter DR, Spengler DM (1978) Mechanical properties and composition of cortical bone. Clin Orthop Relat Res 135:192–217
39.
go back to reference Baxter-Jones AD, Faulkner RA, Forwood MR et al (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26(8):1729–1739CrossRefPubMed Baxter-Jones AD, Faulkner RA, Forwood MR et al (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26(8):1729–1739CrossRefPubMed
41.
go back to reference Skedros JG, Knight AN, Clark GC et al (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151(2):230–244CrossRefPubMed Skedros JG, Knight AN, Clark GC et al (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151(2):230–244CrossRefPubMed
43.
go back to reference Skedros JG, Mason MW, Bloebaum RD (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: Indications of potential strain- specific differences in bone microstructure. Anat Rec 239:405–413. doi:10.1002/ar.1092390407 CrossRefPubMed Skedros JG, Mason MW, Bloebaum RD (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: Indications of potential strain- specific differences in bone microstructure. Anat Rec 239:405–413. doi:10.​1002/​ar.​1092390407 CrossRefPubMed
45.
go back to reference Sedlin ED, Frost HM, Villanueva AR (1963) Variations in cross-section area of rib cortex with age. J Gerontol 18:9–13CrossRefPubMed Sedlin ED, Frost HM, Villanueva AR (1963) Variations in cross-section area of rib cortex with age. J Gerontol 18:9–13CrossRefPubMed
Metadata
Title
Cortical Histomorphometry of the Human Humerus During Ontogeny
Authors
Rosie Pitfield
Justyna J. Miszkiewicz
Patrick Mahoney
Publication date
01-08-2017
Publisher
Springer US
Published in
Calcified Tissue International / Issue 2/2017
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0268-1

Other articles of this Issue 2/2017

Calcified Tissue International 2/2017 Go to the issue