Skip to main content
Top
Published in: Calcified Tissue International 4/2013

Open Access 01-10-2013 | Review

A Review of Phosphate Mineral Nucleation in Biology and Geobiology

Authors: Sidney Omelon, Marianne Ariganello, Ermanno Bonucci, Marc Grynpas, Antonio Nanci

Published in: Calcified Tissue International | Issue 4/2013

Login to get access

Abstract

Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.
Literature
1.
go back to reference Piccoli PM, Candela PA (2002) Apatite in igneous systems. Rev Mineral Geochem 48:255–292CrossRef Piccoli PM, Candela PA (2002) Apatite in igneous systems. Rev Mineral Geochem 48:255–292CrossRef
2.
go back to reference Van Cappellen P, Berner RA (1988) A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments; apatite precipitation. Am J Sci 288:289–333CrossRef Van Cappellen P, Berner RA (1988) A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments; apatite precipitation. Am J Sci 288:289–333CrossRef
3.
go back to reference Thompson DW (1945) On growth and form. MacMillan, New York Thompson DW (1945) On growth and form. MacMillan, New York
4.
go back to reference Quekett J (1849) On the intimate structure of bone, as composing the skeleton, in the four great classes of animals, viz., mammals, birds, reptiles, and fishes, with some remarks on the great value of the knowledge of such structure in determining the affinities of minute fragments of organic remains. J Microsc 2:46–58 Quekett J (1849) On the intimate structure of bone, as composing the skeleton, in the four great classes of animals, viz., mammals, birds, reptiles, and fishes, with some remarks on the great value of the knowledge of such structure in determining the affinities of minute fragments of organic remains. J Microsc 2:46–58
5.
go back to reference Crosby CH, Bailey J (2012) The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Front Microbiol 3:e241–e247CrossRef Crosby CH, Bailey J (2012) The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Front Microbiol 3:e241–e247CrossRef
6.
go back to reference Fleisch H, Neuman WF (1961) Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Am J Physiol 200:1296–1300 Fleisch H, Neuman WF (1961) Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Am J Physiol 200:1296–1300
7.
go back to reference Francis M (1969) The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calcif Tissue Res 3:151–162PubMedCrossRef Francis M (1969) The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calcif Tissue Res 3:151–162PubMedCrossRef
8.
go back to reference Fleisch H, Straumann F, Schenk R, Bisaz S, Allgower M (1966) Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture. Am J Physiol 211:821–825PubMed Fleisch H, Straumann F, Schenk R, Bisaz S, Allgower M (1966) Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture. Am J Physiol 211:821–825PubMed
9.
go back to reference Kulaev IS, Vagabov VM, Kulakovskaya TV (2005) The biochemistry of inorganic polyphosphates. Wiley, New York Kulaev IS, Vagabov VM, Kulakovskaya TV (2005) The biochemistry of inorganic polyphosphates. Wiley, New York
10.
go back to reference Macfarlane MG (1936) Phosphorylation in living yeast. Biochem J 30:1369–1379PubMed Macfarlane MG (1936) Phosphorylation in living yeast. Biochem J 30:1369–1379PubMed
11.
go back to reference Schmidt G, Hecht L, Thannheusar SJ (1946) The enzymatic formation and the accumulation of large amounts of a metaphosphate in bakers’ yeast under certain conditions. J Biol Chem 166:775–776PubMed Schmidt G, Hecht L, Thannheusar SJ (1946) The enzymatic formation and the accumulation of large amounts of a metaphosphate in bakers’ yeast under certain conditions. J Biol Chem 166:775–776PubMed
12.
go back to reference Wiame JM (1947) Étude d’une substance polyphosphorée, basophile, et métachromique chez les levures. Biochim Biophys Acta 1:234–255CrossRef Wiame JM (1947) Étude d’une substance polyphosphorée, basophile, et métachromique chez les levures. Biochim Biophys Acta 1:234–255CrossRef
13.
go back to reference Wiame JM (1949) The occurrence and physiological behaviour of two metaphosphate fractions in yeast. J Biol Chem 178:919–929PubMed Wiame JM (1949) The occurrence and physiological behaviour of two metaphosphate fractions in yeast. J Biol Chem 178:919–929PubMed
14.
go back to reference Salhany JM, Yamane T, Shulman RG, Ogawa S (1975) High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proc Natl Acad Sci USA 72:4966–4970PubMedCrossRef Salhany JM, Yamane T, Shulman RG, Ogawa S (1975) High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proc Natl Acad Sci USA 72:4966–4970PubMedCrossRef
15.
go back to reference Allan RA, Miller JJ (1980) Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26:912–920PubMedCrossRef Allan RA, Miller JJ (1980) Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26:912–920PubMedCrossRef
16.
go back to reference Hupfer M, Glöss S, Schmieder P, Grossart H-P (2008) Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. Int Rev Hydrobiol 93:1–30CrossRef Hupfer M, Glöss S, Schmieder P, Grossart H-P (2008) Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. Int Rev Hydrobiol 93:1–30CrossRef
17.
18.
go back to reference Van Wazer JR, Campanella DA (1950) Structure and properties of the condensed phosphates. IV. Complex ion formation in polyphosphate solutions. J Am Chem Soc 72:655–663CrossRef Van Wazer JR, Campanella DA (1950) Structure and properties of the condensed phosphates. IV. Complex ion formation in polyphosphate solutions. J Am Chem Soc 72:655–663CrossRef
19.
go back to reference Omelon S, Grynpas M (2011) Polyphosphates affect biological apatite nucleation. Cells Tissues Organs 194:171–175PubMedCrossRef Omelon S, Grynpas M (2011) Polyphosphates affect biological apatite nucleation. Cells Tissues Organs 194:171–175PubMedCrossRef
20.
go back to reference Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428PubMedCrossRef Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428PubMedCrossRef
21.
go back to reference Kulakovskaya T, Lichko L, Vagabov V, Kulaev I (2010) Inorganic polyphosphates in mitochondria. Biochemistry (Moscow) 75:825–831CrossRef Kulakovskaya T, Lichko L, Vagabov V, Kulaev I (2010) Inorganic polyphosphates in mitochondria. Biochemistry (Moscow) 75:825–831CrossRef
22.
go back to reference Kulakovskaya T (2012) Inorganic polyphosphates: jack of all trades. Biochem Physiol 1:e107CrossRef Kulakovskaya T (2012) Inorganic polyphosphates: jack of all trades. Biochem Physiol 1:e107CrossRef
23.
go back to reference Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38PubMedCrossRef Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38PubMedCrossRef
24.
go back to reference Lehninger AL, Rossi CS, Greenawalt JW (1963) Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria. Biochem Biophys Res Commun 10:444–448PubMedCrossRef Lehninger AL, Rossi CS, Greenawalt JW (1963) Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria. Biochem Biophys Res Commun 10:444–448PubMedCrossRef
25.
go back to reference Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138PubMed Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138PubMed
26.
go back to reference Raven JA, Knoll AH (2010) Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J 27:572–584CrossRef Raven JA, Knoll AH (2010) Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J 27:572–584CrossRef
27.
go back to reference Omelon S, Baer A, Coyle T, Pilliar RM, Kandel R, Grynpas M (2008) Polymeric crystallization and condensation of calcium polyphosphate glass. Mater Res Bull 43:68–80CrossRef Omelon S, Baer A, Coyle T, Pilliar RM, Kandel R, Grynpas M (2008) Polymeric crystallization and condensation of calcium polyphosphate glass. Mater Res Bull 43:68–80CrossRef
28.
go back to reference Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261PubMedCrossRef Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261PubMedCrossRef
29.
go back to reference de Jager H-J, Heyns AM (1998) Kinetics of acid-catalyzed hydrolysis of a polyphosphate in water. J Phys Chem A 102:2838–2841CrossRef de Jager H-J, Heyns AM (1998) Kinetics of acid-catalyzed hydrolysis of a polyphosphate in water. J Phys Chem A 102:2838–2841CrossRef
30.
go back to reference Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley, New YorkCrossRef Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley, New YorkCrossRef
31.
go back to reference Omelon S, Georgiou J, Henneman ZJ, Wise LM, Sukhu B, Hunt T, Wynnyckyj C, Holmyard D, Bielecki R, Grynpas MD (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4:e5634PubMedCrossRef Omelon S, Georgiou J, Henneman ZJ, Wise LM, Sukhu B, Hunt T, Wynnyckyj C, Holmyard D, Bielecki R, Grynpas MD (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4:e5634PubMedCrossRef
32.
go back to reference Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103:903–908PubMedCrossRef Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103:903–908PubMedCrossRef
33.
go back to reference Fortuna R, Anderson HC, Carty R, Sajdera S (1980) Enzymatic characterization of the matrix vesicle alkaline phosphatase isolated from bovine fetal epiphyseal cartilage. Calcif Tissue Int 30:217–225PubMedCrossRef Fortuna R, Anderson HC, Carty R, Sajdera S (1980) Enzymatic characterization of the matrix vesicle alkaline phosphatase isolated from bovine fetal epiphyseal cartilage. Calcif Tissue Int 30:217–225PubMedCrossRef
34.
go back to reference Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, Whitney LP, Drzewianowski A, Bulygin VV, Bertrand EM, Wu Z, Benitez-Nelson C, Heithoff A (2012) The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7:e33768PubMedCrossRef Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, Whitney LP, Drzewianowski A, Bulygin VV, Bertrand EM, Wu Z, Benitez-Nelson C, Heithoff A (2012) The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7:e33768PubMedCrossRef
35.
go back to reference Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49CrossRef Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49CrossRef
36.
go back to reference McConnell D (1973) Apatite: its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Springer, New York McConnell D (1973) Apatite: its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Springer, New York
37.
go back to reference Hewitt RA (1980) Microstructural contrasts between some sedimentary francolites. J Geol Soc Lond 137:661–667CrossRef Hewitt RA (1980) Microstructural contrasts between some sedimentary francolites. J Geol Soc Lond 137:661–667CrossRef
38.
go back to reference Nathan Y (1984) The mineralogy and geochemistry of phosphorites. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer, Berlin, pp 275–291CrossRef Nathan Y (1984) The mineralogy and geochemistry of phosphorites. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer, Berlin, pp 275–291CrossRef
39.
go back to reference Baturin GN, Bezrukov PL (1979) Phosphorites on the sea floor and their origin. Mar Geol 31:317–332CrossRef Baturin GN, Bezrukov PL (1979) Phosphorites on the sea floor and their origin. Mar Geol 31:317–332CrossRef
40.
41.
go back to reference Filippelli GM (2011) Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84:759–766PubMedCrossRef Filippelli GM (2011) Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84:759–766PubMedCrossRef
42.
go back to reference Bailey JV, Corsetti FA, Greene SE, Crosby CH, Liu P, Orphan VJ (2013) Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Geobiology 11:397–405PubMedCrossRef Bailey JV, Corsetti FA, Greene SE, Crosby CH, Liu P, Orphan VJ (2013) Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Geobiology 11:397–405PubMedCrossRef
43.
go back to reference McConnell D (1965) Precipitation of phosphates in sea water. Econ Geol 60:1059–1062CrossRef McConnell D (1965) Precipitation of phosphates in sea water. Econ Geol 60:1059–1062CrossRef
44.
go back to reference von Klement R (1938) Die anorganische Skelettsubstanz, ihre Zusammensetzung, natürlich und künstliche Bildung. Naturwissenschaften 1938:145–152CrossRef von Klement R (1938) Die anorganische Skelettsubstanz, ihre Zusammensetzung, natürlich und künstliche Bildung. Naturwissenschaften 1938:145–152CrossRef
45.
go back to reference McConnell D (1963) Inorganic constituents in the shell of the living brachiopod Lingula. Geol Soc Am Bull 74:363–364CrossRef McConnell D (1963) Inorganic constituents in the shell of the living brachiopod Lingula. Geol Soc Am Bull 74:363–364CrossRef
46.
go back to reference Watabe N, Pan C-M (1984) Phosphatic shell formation in atremate brachiopods. Am Zool 24:977–985 Watabe N, Pan C-M (1984) Phosphatic shell formation in atremate brachiopods. Am Zool 24:977–985
47.
go back to reference Pautard FGE (1959) Hydroxyapatite as a developmental feature of Spirostomum ambiguum. Biochim Biophys Acta 35:33–46PubMedCrossRef Pautard FGE (1959) Hydroxyapatite as a developmental feature of Spirostomum ambiguum. Biochim Biophys Acta 35:33–46PubMedCrossRef
48.
go back to reference Levy M (1894) Chemische Untersuchungen über osteomalacische Knochen. Z Phys Chem 19:239–270 Levy M (1894) Chemische Untersuchungen über osteomalacische Knochen. Z Phys Chem 19:239–270
49.
go back to reference de Jong WF (1926) La substance minérale dans les os. Recl Trav Chim Pays Bas 45:445–448CrossRef de Jong WF (1926) La substance minérale dans les os. Recl Trav Chim Pays Bas 45:445–448CrossRef
50.
go back to reference Taylor NW, Sheard C (1929) Microscopic and X-ray investigations on the calcification of tissue. J Biol Chem 81:479–493 Taylor NW, Sheard C (1929) Microscopic and X-ray investigations on the calcification of tissue. J Biol Chem 81:479–493
51.
go back to reference McConnell D (1952) The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissues. J Dent Res 31:53–63PubMedCrossRef McConnell D (1952) The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissues. J Dent Res 31:53–63PubMedCrossRef
52.
go back to reference Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Res 28:271–298CrossRef Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Res 28:271–298CrossRef
53.
go back to reference Tadic D, Peters F, Epple M (2002) Continuous synthesis of amorphous carbonated apatites. Biomaterials 23:2553–2559PubMedCrossRef Tadic D, Peters F, Epple M (2002) Continuous synthesis of amorphous carbonated apatites. Biomaterials 23:2553–2559PubMedCrossRef
54.
go back to reference LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:1PubMed LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:1PubMed
55.
go back to reference Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam
56.
go back to reference McConnell D (1965) Crystal chemistry of hydroxyapatite: its relation to bone mineral. Arch Oral Biol 10:421–431PubMedCrossRef McConnell D (1965) Crystal chemistry of hydroxyapatite: its relation to bone mineral. Arch Oral Biol 10:421–431PubMedCrossRef
57.
go back to reference Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York
58.
go back to reference Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034PubMedCrossRef Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034PubMedCrossRef
59.
go back to reference Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRef Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRef
60.
go back to reference Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCrossRef Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCrossRef
61.
go back to reference Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238PubMedCrossRef Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238PubMedCrossRef
62.
go back to reference Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. Univesity of Chicago Press, Chicago Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. Univesity of Chicago Press, Chicago
63.
go back to reference Morse JW (1974) Dissolution kinetics of calcium carbonate in sea water, III. A new method for the study of carbonate reaction kinetics. Am J Sci 274:97–107CrossRef Morse JW (1974) Dissolution kinetics of calcium carbonate in sea water, III. A new method for the study of carbonate reaction kinetics. Am J Sci 274:97–107CrossRef
64.
go back to reference Kashchiev D, van Rosmalen GM (2003) Nucleation in solutions revisited. Cryst Res Technol 38:555–574CrossRef Kashchiev D, van Rosmalen GM (2003) Nucleation in solutions revisited. Cryst Res Technol 38:555–574CrossRef
65.
go back to reference Larsen MJ (1986) An investigation of the theoretical background for the stability of the calcium-phosphate salts and their mutual conversion in aqueous solutions. Arch Oral Biol 31:757–761PubMedCrossRef Larsen MJ (1986) An investigation of the theoretical background for the stability of the calcium-phosphate salts and their mutual conversion in aqueous solutions. Arch Oral Biol 31:757–761PubMedCrossRef
66.
go back to reference Glimcher MJ, Hodge AJ, Schmitt FO (1957) Macromolecular aggregation states in relation to mineralization: the collagen–hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860PubMedCrossRef Glimcher MJ, Hodge AJ, Schmitt FO (1957) Macromolecular aggregation states in relation to mineralization: the collagen–hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860PubMedCrossRef
67.
68.
go back to reference Kratz A, Ferraro M, Sluss PM, Lewandrowski KB (2004) Laboratory reference values. N Engl J Med 351:1548–1564PubMedCrossRef Kratz A, Ferraro M, Sluss PM, Lewandrowski KB (2004) Laboratory reference values. N Engl J Med 351:1548–1564PubMedCrossRef
69.
go back to reference Sandin K, Kloo L, Nevsten P, Wallenberg RL, Olsson LF (2009) Formation of carbonated apatite particles from a supersaturated inorganic blood serum model. J Mater Sci Mater Med 20:1677–1687PubMedCrossRef Sandin K, Kloo L, Nevsten P, Wallenberg RL, Olsson LF (2009) Formation of carbonated apatite particles from a supersaturated inorganic blood serum model. J Mater Sci Mater Med 20:1677–1687PubMedCrossRef
70.
go back to reference Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286–293PubMed Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286–293PubMed
71.
go back to reference Martland M, Robison R (1924) The possible significance of hexosephosphoric esters in ossification: part V. The enzyme in the early stages of bone development. Biochem J 18:1354PubMed Martland M, Robison R (1924) The possible significance of hexosephosphoric esters in ossification: part V. The enzyme in the early stages of bone development. Biochem J 18:1354PubMed
72.
go back to reference Kazakov A (1937) The phosphorite facies and the genesis of phosphorites. Geological Investigations of Agricultural Ores; USSR Trans. Sci Inst Fert Insectofung 142:93–113 Kazakov A (1937) The phosphorite facies and the genesis of phosphorites. Geological Investigations of Agricultural Ores; USSR Trans. Sci Inst Fert Insectofung 142:93–113
73.
74.
go back to reference Lacroix A (1910) Minéralogie de la France et de ses colonies. Librairie Polytechnique Baudry et Cie, Paris Lacroix A (1910) Minéralogie de la France et de ses colonies. Librairie Polytechnique Baudry et Cie, Paris
75.
go back to reference de Montigny C, Prairie YT (1993) The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia 253:141–150CrossRef de Montigny C, Prairie YT (1993) The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia 253:141–150CrossRef
76.
go back to reference Einsele W (1938) Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch Hydrobiol 33:361–387 Einsele W (1938) Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch Hydrobiol 33:361–387
77.
go back to reference Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes. J Ecol 30:147–201CrossRef Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes. J Ecol 30:147–201CrossRef
78.
go back to reference Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. Water Environ Res 37:800–821 Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. Water Environ Res 37:800–821
79.
go back to reference Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418PubMedCrossRef Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418PubMedCrossRef
80.
go back to reference Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, Brandes JA (2008) Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320:652–655PubMedCrossRef Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, Brandes JA (2008) Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320:652–655PubMedCrossRef
82.
go back to reference Cayeux L (1936) Existence of many bacteria in sedimentary phosphates of all ages—consequences. C R Hebd Seances Acad Sci 203:1198–1200 Cayeux L (1936) Existence of many bacteria in sedimentary phosphates of all ages—consequences. C R Hebd Seances Acad Sci 203:1198–1200
83.
go back to reference Nathan Y, Bremner JM, Loewenthal RE, Monteiro P (1993) Role of bacteria in phosphorite genesis. Geomicrobiol J 11:69–76CrossRef Nathan Y, Bremner JM, Loewenthal RE, Monteiro P (1993) Role of bacteria in phosphorite genesis. Geomicrobiol J 11:69–76CrossRef
84.
go back to reference Marais GvR, Loewenthal R, Siebritz I (1983) Observations supporting phosphate removal by biological excess uptake: a review. Water Sci Technol 15:15–41 Marais GvR, Loewenthal R, Siebritz I (1983) Observations supporting phosphate removal by biological excess uptake: a review. Water Sci Technol 15:15–41
85.
go back to reference Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlösser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518CrossRef Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlösser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518CrossRef
86.
go back to reference Goldhammer T, Bruchert V, Ferdelman TG, Zabel M (2010) Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci 3:557–561CrossRef Goldhammer T, Bruchert V, Ferdelman TG, Zabel M (2010) Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci 3:557–561CrossRef
87.
go back to reference Schulz HN, Brinkhoff T, Ferdelman TG, Mariné MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495PubMedCrossRef Schulz HN, Brinkhoff T, Ferdelman TG, Mariné MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495PubMedCrossRef
88.
go back to reference Conkright ME, Gregg WW, Levitus S (2000) Seasonal cycle of phosphate in the open ocean. Deep Sea Res Part 1 Oceanogr Res Pap 47:159–175 Conkright ME, Gregg WW, Levitus S (2000) Seasonal cycle of phosphate in the open ocean. Deep Sea Res Part 1 Oceanogr Res Pap 47:159–175
89.
go back to reference Brock J, Schulz-Vogt HN (2011) Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J 5:497–506PubMedCrossRef Brock J, Schulz-Vogt HN (2011) Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J 5:497–506PubMedCrossRef
90.
go back to reference Ennever J, Creamer H (1967) Microbiologic calcification: bone mineral and bacteria. Calcif Tissue Res 1:87–93PubMedCrossRef Ennever J, Creamer H (1967) Microbiologic calcification: bone mineral and bacteria. Calcif Tissue Res 1:87–93PubMedCrossRef
91.
go back to reference Bulleid A (1925) An experimental study of Leptothrix buccalis. Br Dent J 46:289–300 Bulleid A (1925) An experimental study of Leptothrix buccalis. Br Dent J 46:289–300
92.
go back to reference Jensen AT, Danø M (1954) Crystallography of dental calculus and the precipitation of certain calcium phosphates. J Dent Res 33:741–750PubMedCrossRef Jensen AT, Danø M (1954) Crystallography of dental calculus and the precipitation of certain calcium phosphates. J Dent Res 33:741–750PubMedCrossRef
93.
go back to reference Grøn P, van Campen GJ, Lindstrom I (1967) Human dental calculus: inorganic chemical and crystallographic composition. Arch Oral Biol 12:829–837PubMedCrossRef Grøn P, van Campen GJ, Lindstrom I (1967) Human dental calculus: inorganic chemical and crystallographic composition. Arch Oral Biol 12:829–837PubMedCrossRef
94.
go back to reference Zapanta Le Geros R (1974) Variations in the crystalline components of human dental calculus: i. crystallographic and spectroscopic methods of analysis. J Dent Res 53:45–50CrossRef Zapanta Le Geros R (1974) Variations in the crystalline components of human dental calculus: i. crystallographic and spectroscopic methods of analysis. J Dent Res 53:45–50CrossRef
95.
go back to reference Sundberg M, Friskopp J (1985) Crystallography of supragingival and subgingival human dental calculus. Eur J Oral Sci 93:30–38CrossRef Sundberg M, Friskopp J (1985) Crystallography of supragingival and subgingival human dental calculus. Eur J Oral Sci 93:30–38CrossRef
96.
go back to reference Poff AM, Pearce EIF, Larsen MJ, Cutress TW (1997) Human supragingival in vivo calculus formation in relation to saturation of saliva with respect to calcium phosphates. Arch Oral Biol 42:93–99PubMedCrossRef Poff AM, Pearce EIF, Larsen MJ, Cutress TW (1997) Human supragingival in vivo calculus formation in relation to saturation of saliva with respect to calcium phosphates. Arch Oral Biol 42:93–99PubMedCrossRef
97.
go back to reference Fleisch H, Bisaz S (1962) Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 203:671–675PubMed Fleisch H, Bisaz S (1962) Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 203:671–675PubMed
98.
go back to reference Rohanizadeh R, LeGeros RZ (2005) Ultrastructural study of calculus–enamel and calculus–root interfaces. Arch Oral Biol 50:89–96PubMedCrossRef Rohanizadeh R, LeGeros RZ (2005) Ultrastructural study of calculus–enamel and calculus–root interfaces. Arch Oral Biol 50:89–96PubMedCrossRef
99.
go back to reference Ennever J (1960) Intracellular calcification by oral filamentous microorganisms. J Periodont 31:304–307 Ennever J (1960) Intracellular calcification by oral filamentous microorganisms. J Periodont 31:304–307
100.
go back to reference Ennever J, Vogel JJ, Streckfuss JL (1971) Synthetic medium for calcification of Bacterionema matruchotii. J Dent Res 50:1327–1330PubMedCrossRef Ennever J, Vogel JJ, Streckfuss JL (1971) Synthetic medium for calcification of Bacterionema matruchotii. J Dent Res 50:1327–1330PubMedCrossRef
101.
go back to reference Lai CH, Listgarten MA (1980) Comparative ultrastructure of certain Actinomyces species, Arachnia, Bacterionema and Rothia. J Periodontol 51:136–154PubMedCrossRef Lai CH, Listgarten MA (1980) Comparative ultrastructure of certain Actinomyces species, Arachnia, Bacterionema and Rothia. J Periodontol 51:136–154PubMedCrossRef
102.
go back to reference Takazoe I, Nakamura T (1965) The relation between metachromatic granules and intracelluar calcificaiton of Bacterionema matruchotti. Bull Tokyo Dent Coll 35:29–42PubMed Takazoe I, Nakamura T (1965) The relation between metachromatic granules and intracelluar calcificaiton of Bacterionema matruchotti. Bull Tokyo Dent Coll 35:29–42PubMed
103.
go back to reference Liu H, Segreto VA, Baker RA, Vastola KA, Ramsey LL, Gerlach RW (2002) Anticalculus efficacy and safety of a novel whitening dentifrice containing sodium hexametaphosphate: a controlled six-month clinical trial. J Clin Dent 13:25–28PubMed Liu H, Segreto VA, Baker RA, Vastola KA, Ramsey LL, Gerlach RW (2002) Anticalculus efficacy and safety of a novel whitening dentifrice containing sodium hexametaphosphate: a controlled six-month clinical trial. J Clin Dent 13:25–28PubMed
104.
go back to reference Briner WW, Francis MD (1973) In vitro and in vivo evaluation of anti-calculus agents. Calcif Tissue Res 11:10–22PubMedCrossRef Briner WW, Francis MD (1973) In vitro and in vivo evaluation of anti-calculus agents. Calcif Tissue Res 11:10–22PubMedCrossRef
105.
go back to reference Tanzer J, Hageage G Jr (1970) Polyphosphate inhibition of growth of plaques formed by streptococci and diphtheroids implicated in oral disease. Infect Immun 1:604PubMed Tanzer J, Hageage G Jr (1970) Polyphosphate inhibition of growth of plaques formed by streptococci and diphtheroids implicated in oral disease. Infect Immun 1:604PubMed
106.
go back to reference Franker CK, McGee MP, Rezzo TP (1979) Alkaline phosphatase activity in a strain of Bacterionema matruchotii. J Dent Res 58:1705–1708PubMedCrossRef Franker CK, McGee MP, Rezzo TP (1979) Alkaline phosphatase activity in a strain of Bacterionema matruchotii. J Dent Res 58:1705–1708PubMedCrossRef
107.
go back to reference Lo Storto S, Silvestrini G, Bonucci E (1992) Ultrastructural localization of alkaline and acid phosphatase activities in dental plaque. J Periodont Res 27:161–166PubMedCrossRef Lo Storto S, Silvestrini G, Bonucci E (1992) Ultrastructural localization of alkaline and acid phosphatase activities in dental plaque. J Periodont Res 27:161–166PubMedCrossRef
108.
go back to reference Cayeux L (1936) Reticulated structure of silica, observed in the Precambrian phtanites and Suessonian phosphates. C R Hebd Seances Acad Sci 203:6–8 Cayeux L (1936) Reticulated structure of silica, observed in the Precambrian phtanites and Suessonian phosphates. C R Hebd Seances Acad Sci 203:6–8
109.
go back to reference Kuenzler EJ, Ketchum BH (1962) Rate of phosphorus uptake by Phaeodactylum tricornutum. Biol Bull 123:134–145CrossRef Kuenzler EJ, Ketchum BH (1962) Rate of phosphorus uptake by Phaeodactylum tricornutum. Biol Bull 123:134–145CrossRef
110.
go back to reference Fisher KA (1971) Polyphosphate in a chlorococcalean alga. Phycologia 10:177–182CrossRef Fisher KA (1971) Polyphosphate in a chlorococcalean alga. Phycologia 10:177–182CrossRef
111.
go back to reference Crawford RM (1973) The protoplasmic ultrastructure of the vegetative cell of Melosira varians C. A. Agardh1. J Phycol 9:50–61 Crawford RM (1973) The protoplasmic ultrastructure of the vegetative cell of Melosira varians C. A. Agardh1. J Phycol 9:50–61
112.
go back to reference Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30:772–794PubMed Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30:772–794PubMed
113.
go back to reference Siderius M, Musgrave A, van den Ende H, Koerten H, Cambier P, van der Meer P (1996) Chlamydomonas eugametos (Chlorophyta) stores phosphate in polyphosphate bodies together with calcium. J Phycol 32:402–409CrossRef Siderius M, Musgrave A, van den Ende H, Koerten H, Cambier P, van der Meer P (1996) Chlamydomonas eugametos (Chlorophyta) stores phosphate in polyphosphate bodies together with calcium. J Phycol 32:402–409CrossRef
114.
go back to reference Ruttenberg KC, Dyhrman ST (2005) Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system. J Geophys Res Oceans 110:C10S13CrossRef Ruttenberg KC, Dyhrman ST (2005) Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system. J Geophys Res Oceans 110:C10S13CrossRef
115.
go back to reference Shapiro I, Greenspan J (1969) Are mitochondria directly involved in biological mineralisation? Calcif Tissue Res 3:100–102PubMedCrossRef Shapiro I, Greenspan J (1969) Are mitochondria directly involved in biological mineralisation? Calcif Tissue Res 3:100–102PubMedCrossRef
116.
go back to reference Gonzales F, Karnovsky MJ (1961) Electron microscopy of osteoblasts in healing fractures of rat bone. J Biophys Biochem Cytol 9:299–316PubMedCrossRef Gonzales F, Karnovsky MJ (1961) Electron microscopy of osteoblasts in healing fractures of rat bone. J Biophys Biochem Cytol 9:299–316PubMedCrossRef
117.
go back to reference Sutfin LV, Holtrop ME, Ogilvie RE (1971) Microanalysis of individual mitochondrial granules with diameters less than 1000 angstroms. Science 174:947–949PubMedCrossRef Sutfin LV, Holtrop ME, Ogilvie RE (1971) Microanalysis of individual mitochondrial granules with diameters less than 1000 angstroms. Science 174:947–949PubMedCrossRef
118.
go back to reference Martin JH, Matthews JL (1969) Mitochondrial granules in chondrocytes. Calcif Tissue Res 3:184–193PubMedCrossRef Martin JH, Matthews JL (1969) Mitochondrial granules in chondrocytes. Calcif Tissue Res 3:184–193PubMedCrossRef
119.
go back to reference Landis WJ, Paine MC, Glimcher MJ (1980) Use of acrolein vapors for the anhydrous preparation of bone tissue for electron microscopy. J Ultrastruct Res 70:171–180PubMedCrossRef Landis WJ, Paine MC, Glimcher MJ (1980) Use of acrolein vapors for the anhydrous preparation of bone tissue for electron microscopy. J Ultrastruct Res 70:171–180PubMedCrossRef
120.
go back to reference Matthews JL (1970) Ultrastructure of calcifying tissues. Am J Anat 129:450–457CrossRef Matthews JL (1970) Ultrastructure of calcifying tissues. Am J Anat 129:450–457CrossRef
121.
go back to reference Martin JHPD, Matthews JLPD (1970) Mitochondrial granules in chondrocytes, osteoblasts and osteocytes: an ultrastructural and microincineration study. Clin Orthop Relat Res 68:273–278PubMedCrossRef Martin JHPD, Matthews JLPD (1970) Mitochondrial granules in chondrocytes, osteoblasts and osteocytes: an ultrastructural and microincineration study. Clin Orthop Relat Res 68:273–278PubMedCrossRef
122.
go back to reference Matthews JL, Martin JH, Sampson HW, Kunin AS, Roan JH (1970) Mitochondrial granules in the normal and rachitic rat epiphysis. Calcif Tissue Res 5:91–99PubMedCrossRef Matthews JL, Martin JH, Sampson HW, Kunin AS, Roan JH (1970) Mitochondrial granules in the normal and rachitic rat epiphysis. Calcif Tissue Res 5:91–99PubMedCrossRef
123.
go back to reference Landis WJ, Glimcher MJ (1982) Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res 78:227–268PubMedCrossRef Landis WJ, Glimcher MJ (1982) Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res 78:227–268PubMedCrossRef
124.
go back to reference Gay C, Schraer H (1975) Frozen thin-sections of rapidly forming bone: bone cell ultrastructure. Calcif Tissue Res 19:39–49PubMedCrossRef Gay C, Schraer H (1975) Frozen thin-sections of rapidly forming bone: bone cell ultrastructure. Calcif Tissue Res 19:39–49PubMedCrossRef
125.
go back to reference Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223PubMedCrossRef Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223PubMedCrossRef
126.
go back to reference Landis WJ, Hauschka BT, Rogerson CA, Glimcher MJ (1977) Electron microscopic observations of bone tissue prepared by ultracryomicrotomy. J Ultrastruct Res 59:185–206PubMedCrossRef Landis WJ, Hauschka BT, Rogerson CA, Glimcher MJ (1977) Electron microscopic observations of bone tissue prepared by ultracryomicrotomy. J Ultrastruct Res 59:185–206PubMedCrossRef
127.
go back to reference Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139PubMedCrossRef Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139PubMedCrossRef
128.
go back to reference Bonucci E, Derenzini M, Marinozzi V (1973) The organic–inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211PubMedCrossRef Bonucci E, Derenzini M, Marinozzi V (1973) The organic–inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211PubMedCrossRef
129.
go back to reference Thomas RS, Greenawalt JW (1968) Microincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J Cell Biol 39:55–76PubMedCrossRef Thomas RS, Greenawalt JW (1968) Microincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J Cell Biol 39:55–76PubMedCrossRef
130.
go back to reference Weinbach EC, von Brand T (1967) Formation, isolation and composition of dense granules from mitochondria. Biochim Biophys Acta 148:256–266PubMedCrossRef Weinbach EC, von Brand T (1967) Formation, isolation and composition of dense granules from mitochondria. Biochim Biophys Acta 148:256–266PubMedCrossRef
131.
go back to reference Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109:14170–14175PubMedCrossRef Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109:14170–14175PubMedCrossRef
132.
go back to reference Christoffersen J, Christoffersen MR, Kibalczyc W, Andersen FA (1989) A contribution to the understanding of the formation of calcium phosphates. J Cryst Growth 94:767–777CrossRef Christoffersen J, Christoffersen MR, Kibalczyc W, Andersen FA (1989) A contribution to the understanding of the formation of calcium phosphates. J Cryst Growth 94:767–777CrossRef
133.
go back to reference Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174:527–535PubMedCrossRef Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174:527–535PubMedCrossRef
134.
go back to reference Maximow AA (1910) Untersuchungen über Blut und Bindegewebe III Die embryonale Histogenese des Knochenmarks der Säugetiere. Arch Mikr Anat bd 76 (1910–1911) Maximow AA (1910) Untersuchungen über Blut und Bindegewebe III Die embryonale Histogenese des Knochenmarks der Säugetiere. Arch Mikr Anat bd 76 (1910–1911)
135.
go back to reference Kashiwa HK, Komorous J (1971) Mineralized spherules in the cells and matrix of calcifying cartilage from developing bone. Anat Rec 170:119–127PubMedCrossRef Kashiwa HK, Komorous J (1971) Mineralized spherules in the cells and matrix of calcifying cartilage from developing bone. Anat Rec 170:119–127PubMedCrossRef
136.
go back to reference Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520PubMedCrossRef Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520PubMedCrossRef
137.
go back to reference Lester KS, Ash MM Jr (1980) Scanning electron microscopy of mineralized cartilage in rat mandibular condyle. J Ultrastruct Res 72:141–150PubMedCrossRef Lester KS, Ash MM Jr (1980) Scanning electron microscopy of mineralized cartilage in rat mandibular condyle. J Ultrastruct Res 72:141–150PubMedCrossRef
138.
go back to reference Pautard FGE (1970) The mineral phase of calcified cartilage, bone and baleen. Calcif Tissue Res 4:34–36CrossRef Pautard FGE (1970) The mineral phase of calcified cartilage, bone and baleen. Calcif Tissue Res 4:34–36CrossRef
139.
go back to reference LeGeros R, Pan C-M, Suga S, Watabe N (1985) Crystallo-chemical properties of apatite in atremate brachiopod shells. Calcif Tissue Int 37:98–100PubMedCrossRef LeGeros R, Pan C-M, Suga S, Watabe N (1985) Crystallo-chemical properties of apatite in atremate brachiopod shells. Calcif Tissue Int 37:98–100PubMedCrossRef
140.
go back to reference Finley HE, Brown CA, Daniel WA (1964) Electron microscopy of the ectoplasm and infraciliature of Spirostomum ambiguum. J Eukaryot Microbiol 11:264–280 Finley HE, Brown CA, Daniel WA (1964) Electron microscopy of the ectoplasm and infraciliature of Spirostomum ambiguum. J Eukaryot Microbiol 11:264–280
141.
go back to reference Jones AR (1967) Calcium and phosphorus accumulation in Spirostomum ambiguum. J Eukaryot Microbiol 14:220–225 Jones AR (1967) Calcium and phosphorus accumulation in Spirostomum ambiguum. J Eukaryot Microbiol 14:220–225
142.
go back to reference Daniel WA, Mattern CFT (1965) Some observations on the structure of the peristomial membranelle of Spirostomum ambiguum. J Eukaryot Microbiol 12:14–27 Daniel WA, Mattern CFT (1965) Some observations on the structure of the peristomial membranelle of Spirostomum ambiguum. J Eukaryot Microbiol 12:14–27
143.
go back to reference Kashiwa H (1970) Mineralized spherules in cartilage of bone revealed by cytochemical methods. Am J Anat 129:459–465PubMedCrossRef Kashiwa H (1970) Mineralized spherules in cartilage of bone revealed by cytochemical methods. Am J Anat 129:459–465PubMedCrossRef
144.
go back to reference Watt J (1928) The development of bone: (a) the process of development in bones of different types; (b) normal physiologic calcification of the matrix in cartilage and in bone; (c) the problem of the manner of deposition of the calcium salts. Arch Surg 17:1017–1046CrossRef Watt J (1928) The development of bone: (a) the process of development in bones of different types; (b) normal physiologic calcification of the matrix in cartilage and in bone; (c) the problem of the manner of deposition of the calcium salts. Arch Surg 17:1017–1046CrossRef
145.
go back to reference Pautard F (1981) Calcium phosphate microspheres in biology. Prog Cryst Growth Charact Mater 4:89–98CrossRef Pautard F (1981) Calcium phosphate microspheres in biology. Prog Cryst Growth Charact Mater 4:89–98CrossRef
146.
go back to reference Weiner S, Addadi L (2011) Crystallization pathways in biomineralization. Annu Rev Mater Res 41:21–40CrossRef Weiner S, Addadi L (2011) Crystallization pathways in biomineralization. Annu Rev Mater Res 41:21–40CrossRef
147.
go back to reference Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265PubMedCrossRef Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265PubMedCrossRef
148.
go back to reference Bonucci E, Reurink J (1978) The fine structure of decalcified cartilage and bone: a comparison between decalcification procedures performed before and after embedding. Calcif Tissue Res 25:179–190PubMedCrossRef Bonucci E, Reurink J (1978) The fine structure of decalcified cartilage and bone: a comparison between decalcification procedures performed before and after embedding. Calcif Tissue Res 25:179–190PubMedCrossRef
149.
go back to reference Bonucci E (2005) Calcified tissue histochemistry: from microstructures to nanoparticles. Eur J Histochem 49:1–10PubMed Bonucci E (2005) Calcified tissue histochemistry: from microstructures to nanoparticles. Eur J Histochem 49:1–10PubMed
150.
go back to reference Pautard F (1966) A biomolecular survey of calcification. In: Fleisch H, Blackwood JJ, Owen M (eds) Proceedings of the Third European Symposium on Calcified Tissues. Springer, New York, p 108–122 Pautard F (1966) A biomolecular survey of calcification. In: Fleisch H, Blackwood JJ, Owen M (eds) Proceedings of the Third European Symposium on Calcified Tissues. Springer, New York, p 108–122
151.
go back to reference Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393CrossRef Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393CrossRef
152.
go back to reference Freudenberg E, György P (1921) Über Kalkbildung durch tierische Gewebe. III. Biochem Z 118:50–54 Freudenberg E, György P (1921) Über Kalkbildung durch tierische Gewebe. III. Biochem Z 118:50–54
153.
go back to reference Myerson A (2002) Handbook of industrial crystallization. Butterworth-Heinemann, Boston Myerson A (2002) Handbook of industrial crystallization. Butterworth-Heinemann, Boston
154.
go back to reference Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105:12748–12753PubMedCrossRef Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105:12748–12753PubMedCrossRef
155.
go back to reference Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 107:6316–6321PubMedCrossRef Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 107:6316–6321PubMedCrossRef
156.
go back to reference Mahamid J, Addadi L, Weiner S (2011) Crystallization pathways in bone. Cells Tissues Organs 194:92–97PubMedCrossRef Mahamid J, Addadi L, Weiner S (2011) Crystallization pathways in bone. Cells Tissues Organs 194:92–97PubMedCrossRef
157.
go back to reference Rohde M, Mayer H (2007) Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis. Calcif Tissue Int 80:323–336PubMedCrossRef Rohde M, Mayer H (2007) Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis. Calcif Tissue Int 80:323–336PubMedCrossRef
158.
Metadata
Title
A Review of Phosphate Mineral Nucleation in Biology and Geobiology
Authors
Sidney Omelon
Marianne Ariganello
Ermanno Bonucci
Marc Grynpas
Antonio Nanci
Publication date
01-10-2013
Publisher
Springer US
Published in
Calcified Tissue International / Issue 4/2013
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9784-9

Other articles of this Issue 4/2013

Calcified Tissue International 4/2013 Go to the issue