Skip to main content
Top
Published in: Osteoporosis International 6/2009

01-06-2009 | Bone Quality Seminars: Ultrastructure

Bone mineral: update on chemical composition and structure

Authors: C. Rey, C. Combes, C. Drouet, M. J. Glimcher

Published in: Osteoporosis International | Issue 6/2009

Login to get access

Excerpt

The structure of the Ca–P solid phase in bone was first identified by deJong in 1926 as a crystalline calcium phosphate similar to geological apatite by chemical analyses and, most importantly, by X-ray diffraction [1]. The X-ray diffraction data was confirmed a few years later [2].
Literature
1.
go back to reference de Jong WF (1926) La substance minerale dans les os. Recl Trav Chim Pays—Bas Belg 45:445–448 de Jong WF (1926) La substance minerale dans les os. Recl Trav Chim Pays—Bas Belg 45:445–448
2.
go back to reference Roseberry HH, Hastings AB, Morse JK (1931) X-ray analysis of bone and teeth. J Biol Chem 90:395–407 Roseberry HH, Hastings AB, Morse JK (1931) X-ray analysis of bone and teeth. J Biol Chem 90:395–407
3.
go back to reference Rey C, Miquel J, Facchini L, Legrand A et al (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRef Rey C, Miquel J, Facchini L, Legrand A et al (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRef
4.
go back to reference Pasteris JD, Wopenka B, Freeman JJ et al (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238PubMedCrossRef Pasteris JD, Wopenka B, Freeman JJ et al (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238PubMedCrossRef
5.
go back to reference Loong CK, Rey C, Kuhn LT et al (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602PubMedCrossRef Loong CK, Rey C, Kuhn LT et al (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602PubMedCrossRef
6.
go back to reference Wu Y, Ackerman JL, Kim H-M et al (2002) Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel and synthetic hydroxyapatite. J Bone Miner Res 17:472–480PubMedCrossRef Wu Y, Ackerman JL, Kim H-M et al (2002) Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel and synthetic hydroxyapatite. J Bone Miner Res 17:472–480PubMedCrossRef
7.
go back to reference Wu Y, Glimcher MJ, Rey C et al (1994) A unique protonated phosphate group in bone mineral and not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. J Mol Biol 244:423–435PubMedCrossRef Wu Y, Glimcher MJ, Rey C et al (1994) A unique protonated phosphate group in bone mineral and not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. J Mol Biol 244:423–435PubMedCrossRef
8.
go back to reference Stuhler R (1938) In: Fortschr Gebiete Rontgenstrahlen 57:231 Stuhler R (1938) In: Fortschr Gebiete Rontgenstrahlen 57:231
9.
go back to reference Robinson RA (1952) An electron microscopic study of the crystalline inorganic components of bone and its relationship to the organic matrix. J Bone Joint Surg 34:389–476PubMed Robinson RA (1952) An electron microscopic study of the crystalline inorganic components of bone and its relationship to the organic matrix. J Bone Joint Surg 34:389–476PubMed
10.
go back to reference Robinson RA, Watson ML (1953) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409CrossRef Robinson RA, Watson ML (1953) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409CrossRef
11.
go back to reference Robinson RA, Watson ML (1955) Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60:596–628PubMedCrossRef Robinson RA, Watson ML (1955) Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60:596–628PubMedCrossRef
13.
go back to reference Finean JB, Engstrom A (1953) The low-angle scatter of X-rays from bone tissue. Biochim Biophys Acta 11:178–189PubMedCrossRef Finean JB, Engstrom A (1953) The low-angle scatter of X-rays from bone tissue. Biochim Biophys Acta 11:178–189PubMedCrossRef
14.
go back to reference Finean JB, Engstrom A (1954) Low-angle reflection in X-ray diffraction patterns of bone tissue. Experientia 10:63–64PubMedCrossRef Finean JB, Engstrom A (1954) Low-angle reflection in X-ray diffraction patterns of bone tissue. Experientia 10:63–64PubMedCrossRef
15.
go back to reference Carlstrom D, Finean J (1954) X-ray diffraction studies on the ultrastructure of bone. Biochim Biophys Acta 13:183–191PubMedCrossRef Carlstrom D, Finean J (1954) X-ray diffraction studies on the ultrastructure of bone. Biochim Biophys Acta 13:183–191PubMedCrossRef
16.
go back to reference Bocciarelli DS (1973) Apatite microcrystals in bone and dentin. J Microsc 16:21–34 Bocciarelli DS (1973) Apatite microcrystals in bone and dentin. J Microsc 16:21–34
18.
go back to reference Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMedCrossRef Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMedCrossRef
19.
go back to reference Tong W, Glimcher MJ, Katz JL et al (2003) Size and shape of mineralities in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72:592–598PubMedCrossRef Tong W, Glimcher MJ, Katz JL et al (2003) Size and shape of mineralities in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72:592–598PubMedCrossRef
20.
go back to reference Eppell SJ, Tong W, Katz JL et al (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034PubMedCrossRef Eppell SJ, Tong W, Katz JL et al (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034PubMedCrossRef
21.
22.
go back to reference Glimcher MJ, Hodge AJ, Schmitt FO (1957) Macromolecular aggregation states in relation to mineralization: the collagen hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860–867PubMedCrossRef Glimcher MJ, Hodge AJ, Schmitt FO (1957) Macromolecular aggregation states in relation to mineralization: the collagen hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860–867PubMedCrossRef
23.
go back to reference Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393CrossRef Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393CrossRef
24.
go back to reference Glimcher MJ (1960) Specificity of the molecular structure of organic matrices in mineralization. In: Sognnaes RF (ed) Calcification in biological systems. American Association for the Advancement of Science, Washington, DC, pp 421–487 Glimcher MJ (1960) Specificity of the molecular structure of organic matrices in mineralization. In: Sognnaes RF (ed) Calcification in biological systems. American Association for the Advancement of Science, Washington, DC, pp 421–487
25.
go back to reference Chen J, Burger C, Krishnan CV et al (2005) In vitro mineralization of collagen in demineralized fish bone. Macromol Chem Phys 206:43–51CrossRef Chen J, Burger C, Krishnan CV et al (2005) In vitro mineralization of collagen in demineralized fish bone. Macromol Chem Phys 206:43–51CrossRef
26.
go back to reference Katz EP (1969) The kinetics of mineralization in vitro. Biochim Biophys Acta 194:121–129PubMed Katz EP (1969) The kinetics of mineralization in vitro. Biochim Biophys Acta 194:121–129PubMed
27.
go back to reference Wang J, Zhou HY, Salih E et al (2004). Bone sialoprotein elicits mineralization and ossification in a bone defect model. In: Sodek J, Landis W (eds.) Proceedings of 8th International Conference on Chemistry and Biology of Mineralized Tissue, Oct. 17–24, 2004, Banff, Alberta, Canada. University of Toronto Press, Toronto, pp. 139–142 Wang J, Zhou HY, Salih E et al (2004). Bone sialoprotein elicits mineralization and ossification in a bone defect model. In: Sodek J, Landis W (eds.) Proceedings of 8th International Conference on Chemistry and Biology of Mineralized Tissue, Oct. 17–24, 2004, Banff, Alberta, Canada. University of Toronto Press, Toronto, pp. 139–142
28.
go back to reference Wang J, Zhou HY, Salih E et al (2006) Site-specific in vivo calcification and osteogenesis stimulated by bone sialoprotein. Calcif Tissue Int 79:179–189PubMedCrossRef Wang J, Zhou HY, Salih E et al (2006) Site-specific in vivo calcification and osteogenesis stimulated by bone sialoprotein. Calcif Tissue Int 79:179–189PubMedCrossRef
29.
go back to reference Ce Tye, Rattray KR, Warner KJ et al (2003) Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J Biol Chem 278:7949–7955CrossRef Ce Tye, Rattray KR, Warner KJ et al (2003) Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J Biol Chem 278:7949–7955CrossRef
30.
go back to reference Wu Y, Ackerman JL, Strawich ES et al (2003) Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 72:610–26PubMedCrossRef Wu Y, Ackerman JL, Strawich ES et al (2003) Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 72:610–26PubMedCrossRef
31.
go back to reference Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In: Sahai N, Schoonen MAA (eds) (2006), Medical Mineralogy and Geochemistry, vol 64. The Mineralogical Society of America, Chantilly, Virginia, pp 223–282 Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In: Sahai N, Schoonen MAA (eds) (2006), Medical Mineralogy and Geochemistry, vol 64. The Mineralogical Society of America, Chantilly, Virginia, pp 223–282
32.
go back to reference Eanes ED, Harper RA, Gillessen IH et al (1966) An amorphous component in bone mineral. In: Galliard PJ, van der Hoff A, Steendyk R (eds.) (1966), Proceedings of 4th European Symposium on Calcified Tissues. Amsterdam: Excerpta Medica, Amsterdam, pp. 24–26 Eanes ED, Harper RA, Gillessen IH et al (1966) An amorphous component in bone mineral. In: Galliard PJ, van der Hoff A, Steendyk R (eds.) (1966), Proceedings of 4th European Symposium on Calcified Tissues. Amsterdam: Excerpta Medica, Amsterdam, pp. 24–26
33.
go back to reference Termine JD, Posner AS (1967) Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 153:1523–1525CrossRef Termine JD, Posner AS (1967) Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 153:1523–1525CrossRef
34.
go back to reference Blumenthal N, Posner A (1973) Hydroxyapatite: mechanism of formation and properties. Calcif Tissue Int 13:235–243CrossRef Blumenthal N, Posner A (1973) Hydroxyapatite: mechanism of formation and properties. Calcif Tissue Int 13:235–243CrossRef
35.
go back to reference Posner A, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral. Acc Chem Res 8:273–281CrossRef Posner A, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral. Acc Chem Res 8:273–281CrossRef
36.
go back to reference Boskey AL, Posner AS (1976) Extraction of a calcium-phosphate complex from bone. Calcif Tissue Res 19:273–283PubMedCrossRef Boskey AL, Posner AS (1976) Extraction of a calcium-phosphate complex from bone. Calcif Tissue Res 19:273–283PubMedCrossRef
37.
go back to reference Glimcher M, Hanson J, Hori et al (2004) Structural Analysis of the earliest Ca-P solid phase in Bone measured in situ. Referred manuscript published in Proceedings of the 8th ICCBMT, Banff, Alberta, Canada, Oct. 17–22, 2004, p. 254 Glimcher M, Hanson J, Hori et al (2004) Structural Analysis of the earliest Ca-P solid phase in Bone measured in situ. Referred manuscript published in Proceedings of the 8th ICCBMT, Banff, Alberta, Canada, Oct. 17–22, 2004, p. 254
38.
go back to reference Heughebaert JC, Montel G (1982) Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate. Calif Tissue Int 34:S103–S108CrossRef Heughebaert JC, Montel G (1982) Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate. Calif Tissue Int 34:S103–S108CrossRef
39.
go back to reference Mathew M, Brown WE, Schroeder LW (1988) Crystal structure of octacalcium bis-(hydrogenphosphate) tetrakis(phosphate)-pentahydrate, Ca8(HPO4) 2(PO4) 4 5 H2O. J. Cryst Spec Res 18:235–250CrossRef Mathew M, Brown WE, Schroeder LW (1988) Crystal structure of octacalcium bis-(hydrogenphosphate) tetrakis(phosphate)-pentahydrate, Ca8(HPO4) 2(PO4) 4 5 H2O. J. Cryst Spec Res 18:235–250CrossRef
40.
go back to reference Lyengar GV, Tandon L (1999) Minor and trace elements in human bones and teeth. International Atomic Energy Agency, NAHRES-39 report, Vienna Lyengar GV, Tandon L (1999) Minor and trace elements in human bones and teeth. International Atomic Energy Agency, NAHRES-39 report, Vienna
41.
go back to reference Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago Press, Chicago Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago Press, Chicago
42.
go back to reference Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amserdam Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amserdam
43.
go back to reference Pellegrino ED, Blitz RM (1972) Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calif Tissue Res 10:128–135CrossRef Pellegrino ED, Blitz RM (1972) Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calif Tissue Res 10:128–135CrossRef
44.
go back to reference Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop 129:279–292PubMed Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop 129:279–292PubMed
45.
go back to reference Legeros RZ (1994) Biological and synthetic apatites. In: Brown PW, Constanz B (eds) Hydroxyapatite and related materials. CRC, Boca Raton, pp 3–28 Legeros RZ (1994) Biological and synthetic apatites. In: Brown PW, Constanz B (eds) Hydroxyapatite and related materials. CRC, Boca Raton, pp 3–28
46.
go back to reference Legeros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144CrossRef Legeros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144CrossRef
47.
go back to reference Wilson RM, Elliott JC, Dowker SEP et al (2005) Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 26:1317–1327PubMedCrossRef Wilson RM, Elliott JC, Dowker SEP et al (2005) Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 26:1317–1327PubMedCrossRef
48.
go back to reference Wilson RM, Dowker SEP, Elliott JC (2005) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials 27:4682–4692CrossRef Wilson RM, Dowker SEP, Elliott JC (2005) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials 27:4682–4692CrossRef
49.
go back to reference Labarthe JC, Bonel G, Montel G (1973) Structure and properties of B-type phosphocalcium carbonate apatites. Annales de Chimie (Fr) 8:289–301 Labarthe JC, Bonel G, Montel G (1973) Structure and properties of B-type phosphocalcium carbonate apatites. Annales de Chimie (Fr) 8:289–301
50.
go back to reference Roufosse AH, Aue WP, Roberts JE et al (1984) Investigation of the mineral phases of bone by solid state phosphorus-31 magic angle spinning nuclear magnetic resonance. Biochem 23:6115–6120CrossRef Roufosse AH, Aue WP, Roberts JE et al (1984) Investigation of the mineral phases of bone by solid state phosphorus-31 magic angle spinning nuclear magnetic resonance. Biochem 23:6115–6120CrossRef
51.
go back to reference Rey C, Collins B, Goehl T et al (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRef Rey C, Collins B, Goehl T et al (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRef
52.
go back to reference Rey C, Shimkizu M, Collins B et al (1990) Resolution enhanced Fourier transform infrared spectroscopic study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. I. Investigation in the v4 PO4 domain. Calcif Tissue Int 46:384–394PubMedCrossRef Rey C, Shimkizu M, Collins B et al (1990) Resolution enhanced Fourier transform infrared spectroscopic study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. I. Investigation in the v4 PO4 domain. Calcif Tissue Int 46:384–394PubMedCrossRef
53.
go back to reference Lu HB, Campbell CT, Graham DJ et al (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72:2886–2894PubMedCrossRef Lu HB, Campbell CT, Graham DJ et al (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72:2886–2894PubMedCrossRef
54.
go back to reference Eichert D, Drouet C, Sfihi H et al (2007) Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendall JB (ed) Biomaterials research advances. Nova, Commack, NY, pp 93–143 Eichert D, Drouet C, Sfihi H et al (2007) Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendall JB (ed) Biomaterials research advances. Nova, Commack, NY, pp 93–143
55.
go back to reference Jager C, Welzel T, Meyer-Zaika W et al (2006) A solid state NMR investigation of the structure of nanocrystalline hydroxyaptite. Magn Reson Chem 44:573–580PubMedCrossRef Jager C, Welzel T, Meyer-Zaika W et al (2006) A solid state NMR investigation of the structure of nanocrystalline hydroxyaptite. Magn Reson Chem 44:573–580PubMedCrossRef
56.
go back to reference Eichert D, Sfihi H, Combes C et al (2004) Specific characteristics of wet nanocrystalline apatites: consequences on biomaterials and bone tissue. Key Eng Mater 254–256:927–930CrossRef Eichert D, Sfihi H, Combes C et al (2004) Specific characteristics of wet nanocrystalline apatites: consequences on biomaterials and bone tissue. Key Eng Mater 254–256:927–930CrossRef
57.
go back to reference Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryprochiton stelleri (Mollusca). J Ultrastruc Res 17:1–13CrossRef Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryprochiton stelleri (Mollusca). J Ultrastruc Res 17:1–13CrossRef
58.
go back to reference Lowenstam HA, Weiner S (1985) Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science 227:51–53PubMedCrossRef Lowenstam HA, Weiner S (1985) Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science 227:51–53PubMedCrossRef
59.
go back to reference Aizenberg J, Lambert G, Weiner S et al (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39PubMedCrossRef Aizenberg J, Lambert G, Weiner S et al (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39PubMedCrossRef
60.
go back to reference Aizenberg J, Weiner S, Addadi L (2003) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44(Supp 1):20–25PubMedCrossRef Aizenberg J, Weiner S, Addadi L (2003) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44(Supp 1):20–25PubMedCrossRef
61.
go back to reference Weiner S, Levi-Kalisman Y, Raz S et al (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44(Supp 1):214–218PubMedCrossRef Weiner S, Levi-Kalisman Y, Raz S et al (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44(Supp 1):214–218PubMedCrossRef
62.
go back to reference Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 29:1027–1028CrossRef Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 29:1027–1028CrossRef
63.
64.
go back to reference Grynpas MD, Omelon S (2007) Transient precursor strategy or very small apatite crystals? Bone 41:162–164PubMedCrossRef Grynpas MD, Omelon S (2007) Transient precursor strategy or very small apatite crystals? Bone 41:162–164PubMedCrossRef
65.
go back to reference Crane NJ, Popescu V, Morris MD (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442PubMedCrossRef Crane NJ, Popescu V, Morris MD (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442PubMedCrossRef
66.
go back to reference Muenzenberg KG, Gebhardt M (1973) Brushite, octacalcium phosphate, and carbonate-containing apatite in bone. Clin Orthop Rel Res 90:271–273 Muenzenberg KG, Gebhardt M (1973) Brushite, octacalcium phosphate, and carbonate-containing apatite in bone. Clin Orthop Rel Res 90:271–273
67.
go back to reference Cazalbous S (2000) PhD thesis, INPT, France Cazalbous S (2000) PhD thesis, INPT, France
68.
69.
go back to reference Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Nat Acad Sci 105:12748–12753PubMedCrossRef Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Nat Acad Sci 105:12748–12753PubMedCrossRef
70.
go back to reference Bonar LC, Rouffousse AH, Sabine WK (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRef Bonar LC, Rouffousse AH, Sabine WK (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRef
Metadata
Title
Bone mineral: update on chemical composition and structure
Authors
C. Rey
C. Combes
C. Drouet
M. J. Glimcher
Publication date
01-06-2009
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 6/2009
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-009-0860-y

Other articles of this Issue 6/2009

Osteoporosis International 6/2009 Go to the issue

Bone Quality Seminars: Ultrastructure

Bone strength and ultrastructure