Skip to main content
Top
Published in: Calcified Tissue International 1/2014

01-01-2014 | Review

Osteocyte-Driven Bone Remodeling

Author: Teresita Bellido

Published in: Calcified Tissue International | Issue 1/2014

Login to get access

Abstract

Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet-to-be-identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone-resorbing osteoclasts. Osteocytes are also the source of molecules that regulate the generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function or to altered expression of either molecule in osteocytes markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling.
Literature
1.
go back to reference Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S et al (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26:4539–4552PubMedCentralPubMedCrossRef Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S et al (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26:4539–4552PubMedCentralPubMedCrossRef
2.
go back to reference Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92PubMedCrossRef Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92PubMedCrossRef
3.
go back to reference Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, Chrysovergis K et al (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118:147–156PubMedCrossRef Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, Chrysovergis K et al (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118:147–156PubMedCrossRef
4.
go back to reference Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446PubMedCentralPubMedCrossRef Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446PubMedCentralPubMedCrossRef
5.
go back to reference Boyce BF, Xing L, Jilka RL, Bellido T, Weinstein RS, Parfitt AM, Manolagas SC (2002) Apoptosis in bone cells. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 151–168CrossRef Boyce BF, Xing L, Jilka RL, Bellido T, Weinstein RS, Parfitt AM, Manolagas SC (2002) Apoptosis in bone cells. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 151–168CrossRef
6.
go back to reference Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, Kuo L et al (2009) Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45:682–692PubMedCentralPubMedCrossRef Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, Kuo L et al (2009) Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45:682–692PubMedCentralPubMedCrossRef
7.
go back to reference Igwe JC, Gao Q, Kizivat T, Kao WW, Kalajzic I (2011) Keratocan is expressed by osteoblasts and can modulate osteogenic differentiation. Connect Tissue Res 52:401–407PubMedCentralPubMedCrossRef Igwe JC, Gao Q, Kizivat T, Kao WW, Kalajzic I (2011) Keratocan is expressed by osteoblasts and can modulate osteogenic differentiation. Connect Tissue Res 52:401–407PubMedCentralPubMedCrossRef
8.
go back to reference Benson MD, Aubin JE, Xiao G, Thomas PE, Franceschi RT (1999) Cloning of a 2.5 kb murine bone sialoprotein promoter fragment and functional analysis of putative Osf2 binding sites. J Bone Miner Res 14:396–405PubMedCrossRef Benson MD, Aubin JE, Xiao G, Thomas PE, Franceschi RT (1999) Cloning of a 2.5 kb murine bone sialoprotein promoter fragment and functional analysis of putative Osf2 binding sites. J Bone Miner Res 14:396–405PubMedCrossRef
9.
go back to reference Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085PubMedCentralPubMedCrossRef Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085PubMedCentralPubMedCrossRef
11.
go back to reference Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC et al (2005) Chronic elevation of PTH in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583PubMedCrossRef Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC et al (2005) Chronic elevation of PTH in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583PubMedCrossRef
12.
go back to reference Wang L, Ciani C, Doty SB, Fritton SP (2004) Delineating bone’s interstitial fluid pathway in vivo. Bone 34:499–509PubMedCrossRef Wang L, Ciani C, Doty SB, Fritton SP (2004) Delineating bone’s interstitial fluid pathway in vivo. Bone 34:499–509PubMedCrossRef
13.
go back to reference Poole KE, Van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844PubMed Poole KE, Van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844PubMed
14.
go back to reference Van Bezooijen RL, Roelen BA, Visser A, Wee-Pals L, de Wilt E, Karperien M, Hamersma H et al (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814PubMedCentralPubMedCrossRef Van Bezooijen RL, Roelen BA, Visser A, Wee-Pals L, de Wilt E, Karperien M, Hamersma H et al (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814PubMedCentralPubMedCrossRef
15.
go back to reference Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276PubMedCrossRef Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276PubMedCrossRef
16.
go back to reference Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543PubMedCrossRef Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543PubMedCrossRef
17.
go back to reference Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589PubMedCentralPubMedCrossRef Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589PubMedCentralPubMedCrossRef
18.
go back to reference Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869PubMedCrossRef Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869PubMedCrossRef
19.
go back to reference Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y et al (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661PubMedCrossRef Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y et al (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661PubMedCrossRef
20.
go back to reference Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D et al (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15:928–935PubMedCrossRef Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D et al (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15:928–935PubMedCrossRef
21.
go back to reference Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, Olivos N et al (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling. J Bone Miner Res 26:1035–1046PubMedCrossRef Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, Olivos N et al (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling. J Bone Miner Res 26:1035–1046PubMedCrossRef
22.
go back to reference Warmington K, Morony S, Sarosi I, Gong G, Stepphens P, Winkler DG, Sutherland MK et al (2004) Sclerostin antagonism in adult rodents, via monoclonal antibody mediated blockade, increases bone mineral density and implicates sclerostin as a key regulator of bone mass during adulthood. J Bone Miner Res 19:S56 Warmington K, Morony S, Sarosi I, Gong G, Stepphens P, Winkler DG, Sutherland MK et al (2004) Sclerostin antagonism in adult rodents, via monoclonal antibody mediated blockade, increases bone mineral density and implicates sclerostin as a key regulator of bone mass during adulthood. J Bone Miner Res 19:S56
23.
go back to reference Warmington K, Ominsky M, Bolon B, Cattley R, Stephens P, Lawson A, Lightwood D et al (2005) Sclerostin monoclonal antibody treatment of osteoporotic rats completely reverses one year of ovariectomy-induced systemic bone loss. J Bone Miner Res 20:S22 Warmington K, Ominsky M, Bolon B, Cattley R, Stephens P, Lawson A, Lightwood D et al (2005) Sclerostin monoclonal antibody treatment of osteoporotic rats completely reverses one year of ovariectomy-induced systemic bone loss. J Bone Miner Res 20:S22
24.
go back to reference Paszty C, Turner CH, Robinson MK (2010) Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 25:1897–1904PubMedCrossRef Paszty C, Turner CH, Robinson MK (2010) Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 25:1897–1904PubMedCrossRef
25.
go back to reference Jilka RL (2009) Inhibiting the inhibitor: a new route to bone anabolism. J Bone Miner Res 24:575–577PubMedCrossRef Jilka RL (2009) Inhibiting the inhibitor: a new route to bone anabolism. J Bone Miner Res 24:575–577PubMedCrossRef
27.
go back to reference van Lierop AH, Witteveen J, Hamdy N, Papapoulos S (2010) Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol 163:833–837PubMedCrossRef van Lierop AH, Witteveen J, Hamdy N, Papapoulos S (2010) Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol 163:833–837PubMedCrossRef
28.
go back to reference Drake MT, Srinivasan B, Modder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D et al (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95:5056–5062PubMedCrossRef Drake MT, Srinivasan B, Modder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D et al (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95:5056–5062PubMedCrossRef
29.
go back to reference Mirza FS, Padhi ID, Raisz LG, Lorenzo JA (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997PubMedCrossRef Mirza FS, Padhi ID, Raisz LG, Lorenzo JA (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997PubMedCrossRef
30.
go back to reference Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MJ, Alam I, Mantila SM et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMedCrossRef Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MJ, Alam I, Mantila SM et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMedCrossRef
31.
go back to reference Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M et al (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50:209–217PubMedCentralPubMedCrossRef Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M et al (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50:209–217PubMedCentralPubMedCrossRef
32.
go back to reference Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234PubMedCrossRef Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234PubMedCrossRef
33.
34.
go back to reference Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615PubMedCrossRef Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615PubMedCrossRef
35.
go back to reference Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, Suzuki H (2013) RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res doi. doi:10.1002/jbmr.1941 Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, Suzuki H (2013) RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res doi. doi:10.​1002/​jbmr.​1941
36.
37.
go back to reference Rhee Y, Allen MR, Condon K, Plotkin LI, Lezcano V, Vyas K, O’Brien CA et al (2009) PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling: divergent role of Sost and the Wnt pathway. J Bone Miner Res 24:S78CrossRef Rhee Y, Allen MR, Condon K, Plotkin LI, Lezcano V, Vyas K, O’Brien CA et al (2009) PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling: divergent role of Sost and the Wnt pathway. J Bone Miner Res 24:S78CrossRef
38.
go back to reference O’Brien CA, Plotkin LI, Galli C, Goellner J, Gortazar AR, Allen MR, Robling AG et al (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One 3:e2942PubMedCentralPubMedCrossRef O’Brien CA, Plotkin LI, Galli C, Goellner J, Gortazar AR, Allen MR, Robling AG et al (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One 3:e2942PubMedCentralPubMedCrossRef
39.
go back to reference Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, Wysolmerski J et al (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27:1018–1029PubMedCentralPubMedCrossRef Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, Wysolmerski J et al (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27:1018–1029PubMedCentralPubMedCrossRef
40.
go back to reference Harris SE, MacDougall M, Horn D, Woodruff K, Zimmer SN, Rebel VI, Fajardo R et al (2012) Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 50:42–53PubMedCentralPubMedCrossRef Harris SE, MacDougall M, Horn D, Woodruff K, Zimmer SN, Rebel VI, Fajardo R et al (2012) Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 50:42–53PubMedCentralPubMedCrossRef
41.
go back to reference Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J et al (2003) Mechanical loading: biphasic osteocyte survival and the targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943PubMedCrossRef Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J et al (2003) Mechanical loading: biphasic osteocyte survival and the targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943PubMedCrossRef
43.
go back to reference Jilka RL, Bellido T, Almeida M, Plotkin LI, O’Brien CA, Weinstein RS, Manolagas SC (2008) Apoptosis in bone cells. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology. Academic Press, San Diego, pp 237–261CrossRef Jilka RL, Bellido T, Almeida M, Plotkin LI, O’Brien CA, Weinstein RS, Manolagas SC (2008) Apoptosis in bone cells. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology. Academic Press, San Diego, pp 237–261CrossRef
44.
go back to reference Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135PubMed Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135PubMed
45.
go back to reference Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS (1998) The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 13:1243–1250PubMedCrossRef Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS (1998) The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 13:1243–1250PubMedCrossRef
46.
go back to reference Huber C, Collishaw S, Mosley JR, Reeve J, Noble BS (2007) Selective estrogen receptor modulator inhibits osteocyte apoptosis during abrupt estrogen withdrawal: implications for bone quality maintenance. Calcif Tissue Int 81:139–144PubMedCrossRef Huber C, Collishaw S, Mosley JR, Reeve J, Noble BS (2007) Selective estrogen receptor modulator inhibits osteocyte apoptosis during abrupt estrogen withdrawal: implications for bone quality maintenance. Calcif Tissue Int 81:139–144PubMedCrossRef
47.
go back to reference Mann V, Huber C, Kogianni G, Collins F, Noble B (2007) The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40:674–684PubMedCrossRef Mann V, Huber C, Kogianni G, Collins F, Noble B (2007) The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40:674–684PubMedCrossRef
48.
go back to reference Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K et al (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730PubMed Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K et al (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730PubMed
49.
go back to reference Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin LI et al (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846PubMedCrossRef Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin LI et al (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846PubMedCrossRef
50.
go back to reference Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282PubMedCentralPubMedCrossRef Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282PubMedCentralPubMedCrossRef
51.
go back to reference Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297PubMedCentralPubMedCrossRef Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297PubMedCentralPubMedCrossRef
52.
go back to reference Bellido T (2010) Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem 111:1–6PubMedCrossRef Bellido T (2010) Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem 111:1–6PubMedCrossRef
53.
go back to reference Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–1374PubMedCentralPubMedCrossRef Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–1374PubMedCentralPubMedCrossRef
54.
go back to reference Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T (2005) Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol 289:C633–C643PubMedCrossRef Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T (2005) Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol 289:C633–C643PubMedCrossRef
55.
go back to reference Bakker A, Klein-Nulend J, Burger E (2004) Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun 320:1163–1168PubMedCrossRef Bakker A, Klein-Nulend J, Burger E (2004) Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun 320:1163–1168PubMedCrossRef
57.
go back to reference Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE (2007) Wnt/β-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α. J Biol Chem 282:20715–20727PubMedCrossRef Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE (2007) Wnt/β-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α. J Biol Chem 282:20715–20727PubMedCrossRef
58.
go back to reference Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, Price JS (2010) Mechano-transduction in osteoblastic cells involves strain-regulated, estrogen receptor α-mediated, control of IGF-IR sensitivity to ambient IGF, leading to PI3-K/ AKT dependent, Wnt/LRP5 receptor-independent activation of β-catenin signaling. J Biol Chem 285:8743–8758PubMedCrossRef Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, Price JS (2010) Mechano-transduction in osteoblastic cells involves strain-regulated, estrogen receptor α-mediated, control of IGF-IR sensitivity to ambient IGF, leading to PI3-K/ AKT dependent, Wnt/LRP5 receptor-independent activation of β-catenin signaling. J Biol Chem 285:8743–8758PubMedCrossRef
59.
go back to reference Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S (2005) Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280:41342–41351PubMedCrossRef Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S (2005) Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280:41342–41351PubMedCrossRef
60.
go back to reference Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T (2013) Crosstalk between caveolin-1/extracellular signal–regulated kinase (ERK) and ß-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288:8168–8175PubMedCrossRef Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T (2013) Crosstalk between caveolin-1/extracellular signal–regulated kinase (ERK) and ß-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288:8168–8175PubMedCrossRef
61.
go back to reference Verborgt O, Gibson G, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67PubMedCrossRef Verborgt O, Gibson G, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67PubMedCrossRef
62.
go back to reference Verborgt O, Tatton NA, Majeska RJ, Schaffler MB (2002) Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res 17:907–914PubMedCrossRef Verborgt O, Tatton NA, Majeska RJ, Schaffler MB (2002) Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res 17:907–914PubMedCrossRef
63.
go back to reference Bellido T (2007) Osteocyte apoptosis induces bone resorption and impairs the skeletal response to weightlessness. Bonekey Osteovision 4:252–256CrossRef Bellido T (2007) Osteocyte apoptosis induces bone resorption and impairs the skeletal response to weightlessness. Bonekey Osteovision 4:252–256CrossRef
64.
go back to reference Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M et al (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475PubMedCrossRef Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M et al (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475PubMedCrossRef
65.
go back to reference Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, Bidwell JP (2008) HMGB1 is a bone-active cytokine. J Cell Physiol 214:730–739PubMedCrossRef Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, Bidwell JP (2008) HMGB1 is a bone-active cytokine. J Cell Physiol 214:730–739PubMedCrossRef
67.
go back to reference Kogianni G, Mann V, Noble BS (2008) Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localised bone destruction. J Bone Miner Res 23:915–927PubMedCrossRef Kogianni G, Mann V, Noble BS (2008) Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localised bone destruction. J Bone Miner Res 23:915–927PubMedCrossRef
68.
go back to reference Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB (2012) Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50:1115–1122PubMedCentralPubMedCrossRef Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB (2012) Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50:1115–1122PubMedCentralPubMedCrossRef
69.
go back to reference Marcus R (2002) Mechanisms of exercise effects on bone. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 1477–1488CrossRef Marcus R (2002) Mechanisms of exercise effects on bone. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 1477–1488CrossRef
70.
go back to reference Bikle DD, Halloran BP, Morey-Holton E (1997) Spaceflight and the skeleton: lessons for the earthbound. Gravit Space Biol Bull 10:119–135PubMed Bikle DD, Halloran BP, Morey-Holton E (1997) Spaceflight and the skeleton: lessons for the earthbound. Gravit Space Biol Bull 10:119–135PubMed
71.
go back to reference Kousteni S, Han L, Chen JR, Almeida M, Plotkin LI, Bellido T, Manolagas SC (2003) Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 111:1651–1664PubMedCentralPubMed Kousteni S, Han L, Chen JR, Almeida M, Plotkin LI, Bellido T, Manolagas SC (2003) Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 111:1651–1664PubMedCentralPubMed
72.
go back to reference Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277:8648–8657PubMedCrossRef Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277:8648–8657PubMedCrossRef
73.
go back to reference Plotkin LI, Bellido T (2001) Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction–independent action of connexin43. Cell Adhes Commun 8:377–382CrossRef Plotkin LI, Bellido T (2001) Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction–independent action of connexin43. Cell Adhes Commun 8:377–382CrossRef
74.
go back to reference Parfitt AM (2002) Life history of osteocytes: relationship to bone age, bone remodeling, and bone fragility. J Musculoskelet Neuronal Interact 2:499–500PubMed Parfitt AM (2002) Life history of osteocytes: relationship to bone age, bone remodeling, and bone fragility. J Musculoskelet Neuronal Interact 2:499–500PubMed
75.
go back to reference Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7PubMedCrossRef Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7PubMedCrossRef
77.
go back to reference Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300PubMedCrossRef Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300PubMedCrossRef
78.
go back to reference Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O’Brien CA, Thostenson J et al (2009) Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in 21-month-old mice. Aging Cell 9:147–161PubMedCentralPubMedCrossRef Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O’Brien CA, Thostenson J et al (2009) Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in 21-month-old mice. Aging Cell 9:147–161PubMedCentralPubMedCrossRef
79.
go back to reference Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun L, Rhee Y et al (2012) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 27:374–389PubMedCentralPubMedCrossRef Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun L, Rhee Y et al (2012) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 27:374–389PubMedCentralPubMedCrossRef
81.
go back to reference Zhang Y, Paul EM, Sathyendra V, Davidson A, Bronson S, Srinivasan S, Gross TS et al (2011) Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 6:e23516PubMedCentralPubMedCrossRef Zhang Y, Paul EM, Sathyendra V, Davidson A, Bronson S, Srinivasan S, Gross TS et al (2011) Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 6:e23516PubMedCentralPubMedCrossRef
82.
go back to reference Grimston SK, Brodt MD, Silva MJ, Civitelli R (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res 23:879–886PubMedCrossRef Grimston SK, Brodt MD, Silva MJ, Civitelli R (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res 23:879–886PubMedCrossRef
83.
go back to reference Qiu S, Rao DS, Palnitkar S, Parfitt AM (2002) Age and distance from the surface but not menopause reduce osteocyte density in human cancellous bone. Bone 31:313–318PubMedCrossRef Qiu S, Rao DS, Palnitkar S, Parfitt AM (2002) Age and distance from the surface but not menopause reduce osteocyte density in human cancellous bone. Bone 31:313–318PubMedCrossRef
84.
go back to reference Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y et al (2006) WNT/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728PubMedCrossRef Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y et al (2006) WNT/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728PubMedCrossRef
Metadata
Title
Osteocyte-Driven Bone Remodeling
Author
Teresita Bellido
Publication date
01-01-2014
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2014
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9774-y

Other articles of this Issue 1/2014

Calcified Tissue International 1/2014 Go to the issue