Skip to main content
Top
Published in: Calcified Tissue International 3/2013

01-09-2013 | Original Research

Citrate Occurs Widely in Healthy and Pathological Apatitic Biomineral: Mineralized Articular Cartilage, and Intimal Atherosclerotic Plaque and Apatitic Kidney Stones

Authors: David G. Reid, Melinda J. Duer, Graham E. Jackson, Rachel C. Murray, Allen L. Rodgers, Catherine M. Shanahan

Published in: Calcified Tissue International | Issue 3/2013

Login to get access

Abstract

There is continuing debate about whether abundant citrate plays an active role in biomineralization of bone. Using solid state NMR dipolar dephasing, we examined another normally mineralized hard tissue, mineralized articular cartilage, as well as biocalcifications arising in pathological conditions, mineralized intimal atherosclerotic vascular plaque, and apatitic uroliths (urinary stones). Residual nondephasing 13C NMR signal at 76 ppm in the spectra of mineralized cartilage and vascular plaque indicates that a quaternary carbon atom resonates at this frequency, consistent with the presence of citrate. The presence, and as yet unproven possible mechanistic involvement, of citrate in tissue mineralization extends the compositional, structural, biogenetic, and cytological similarities between these tissues and bone itself. Out of 10 apatitic kidney stones, five contained NMR-detectable citrate. Finding citrate in a high proportion of uroliths may be significant in view of the use of citrate in urolithiasis therapy and prophylaxis. Citrate may be essential for normal biomineralization (e.g., of cartilage), play a modulatory role in vascular calcification which could be a target for therapeutic intervention, and drive the formation of apatitic rather than other calcific uroliths, including more therapeutically intractable forms of calcium phosphate.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dickens F (1941) The citric acid content of animal tissues with reference to its occurrence in bone and tumour. Biochem J 35:1011–1023PubMed Dickens F (1941) The citric acid content of animal tissues with reference to its occurrence in bone and tumour. Biochem J 35:1011–1023PubMed
3.
go back to reference Huggins C, Bear RS (1944) The course of the prostatic ducts and the anatomy, chemical and X-ray diffraction analysis of prostatic calculi. J Urol 51:37–47 Huggins C, Bear RS (1944) The course of the prostatic ducts and the anatomy, chemical and X-ray diffraction analysis of prostatic calculi. J Urol 51:37–47
4.
go back to reference Hu YY, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22425–22429PubMedCrossRef Hu YY, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22425–22429PubMedCrossRef
5.
go back to reference Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49–53CrossRef Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49–53CrossRef
6.
go back to reference Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R (1998) The role of pH in the adsorption of citrate ions on hydroxyapatite. J Colloid Interface Sci 200:114–120CrossRef Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R (1998) The role of pH in the adsorption of citrate ions on hydroxyapatite. J Colloid Interface Sci 200:114–120CrossRef
7.
go back to reference Schneiders W, Reinstorf A, Pompe W, Grass R, Biewener A, Holch M, Zwipp H, Rammelt S (2007) Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone 40:1048–1059PubMedCrossRef Schneiders W, Reinstorf A, Pompe W, Grass R, Biewener A, Holch M, Zwipp H, Rammelt S (2007) Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone 40:1048–1059PubMedCrossRef
8.
go back to reference Rhee SH, Tanaka J (1999) Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials 20:2155–2160PubMedCrossRef Rhee SH, Tanaka J (1999) Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials 20:2155–2160PubMedCrossRef
9.
go back to reference Hu YY, Liu XP, Ma X, Rawal A, Prozorov T, Akinc M, Mallapragada SK, Schmidt-Rohr K (2011) Biomimetic self-assembling copolymer–hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate. Chem Mater 23:2481–2490CrossRef Hu YY, Liu XP, Ma X, Rawal A, Prozorov T, Akinc M, Mallapragada SK, Schmidt-Rohr K (2011) Biomimetic self-assembling copolymer–hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate. Chem Mater 23:2481–2490CrossRef
10.
go back to reference Johnsson MSA, Richardson CF, Sharma VK, Sallis JD, Nancollas GH (1990) Phosphocitrate and citrate effects on calcium–phosphate crystal-growth. J Dent Res 69:119 Johnsson MSA, Richardson CF, Sharma VK, Sallis JD, Nancollas GH (1990) Phosphocitrate and citrate effects on calcium–phosphate crystal-growth. J Dent Res 69:119
11.
go back to reference Sharma VK, Johnsson M, Sallis JD, Nancollas GH (1992) Influence of citrate and phosphocitrate on the crystallization of octacalcium phosphate. Langmuir 8:676–679CrossRef Sharma VK, Johnsson M, Sallis JD, Nancollas GH (1992) Influence of citrate and phosphocitrate on the crystallization of octacalcium phosphate. Langmuir 8:676–679CrossRef
12.
go back to reference Legeros RZ, Daculsi G, Orly I, Abergas T, Torres W (1989) Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scanning Micros 3:129–138 Legeros RZ, Daculsi G, Orly I, Abergas T, Torres W (1989) Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scanning Micros 3:129–138
13.
go back to reference Xie BQ, Nancollas GH (2010) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22369–22370PubMedCrossRef Xie BQ, Nancollas GH (2010) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22369–22370PubMedCrossRef
14.
go back to reference Wu YJ, Tsai TWT, Chan JCC (2012) Asymmetric crystal morphology of apatite induced by the chirality of dicarboxylate additives. Cryst Growth Des 12:547–549CrossRef Wu YJ, Tsai TWT, Chan JCC (2012) Asymmetric crystal morphology of apatite induced by the chirality of dicarboxylate additives. Cryst Growth Des 12:547–549CrossRef
15.
go back to reference Cheung HS, Kurup IV, Sallis JD, Ryan LM (1996) Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 271:28082–28085PubMedCrossRef Cheung HS, Kurup IV, Sallis JD, Ryan LM (1996) Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 271:28082–28085PubMedCrossRef
16.
go back to reference Robinson MR, Leitao VA, Haleblian GE, Scales CD, Chandrashekar A, Pierre SA, Prerninger GM (2009) Impact of long-term potassium citrate therapy on urinary profiles and recurrent stone formation. J Urol 181:1145–1150PubMedCrossRef Robinson MR, Leitao VA, Haleblian GE, Scales CD, Chandrashekar A, Pierre SA, Prerninger GM (2009) Impact of long-term potassium citrate therapy on urinary profiles and recurrent stone formation. J Urol 181:1145–1150PubMedCrossRef
17.
go back to reference Greischar A, Nakagawa Y, Coe FL (2003) Influence of urine pH and citrate concentration on the upper limit of metastability for calcium phosphate. J Urol 169:867–870PubMedCrossRef Greischar A, Nakagawa Y, Coe FL (2003) Influence of urine pH and citrate concentration on the upper limit of metastability for calcium phosphate. J Urol 169:867–870PubMedCrossRef
18.
go back to reference Mattle D, Hess B (2005) Preventive treatment of nephrolithiasis with alkali citrate—a critical review. Urol Res 33:73–79PubMedCrossRef Mattle D, Hess B (2005) Preventive treatment of nephrolithiasis with alkali citrate—a critical review. Urol Res 33:73–79PubMedCrossRef
19.
go back to reference Delgado-Lopez JM, Iafisco M, Rodriguez I, Tampieri A, Prat M, Gomez-Morales J (2012) Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater 8:3491–3499PubMedCrossRef Delgado-Lopez JM, Iafisco M, Rodriguez I, Tampieri A, Prat M, Gomez-Morales J (2012) Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater 8:3491–3499PubMedCrossRef
20.
go back to reference Chow K, Dixon J, Gilpin S, Kavanagh JP, Rao PN (2004) Citrate inhibits growth of residual fragments in an in vitro model of calcium oxalate renal stones. Kidney Int 65:1724–1730PubMedCrossRef Chow K, Dixon J, Gilpin S, Kavanagh JP, Rao PN (2004) Citrate inhibits growth of residual fragments in an in vitro model of calcium oxalate renal stones. Kidney Int 65:1724–1730PubMedCrossRef
21.
go back to reference Bak M, Thomsen JK, Jakobsen HJ, Petersen SE, Petersen TE, Nielsen NC (2000) Solid-state 13C and 31P NMR analysis of urinary stones. J Urol 164:856–863PubMedCrossRef Bak M, Thomsen JK, Jakobsen HJ, Petersen SE, Petersen TE, Nielsen NC (2000) Solid-state 13C and 31P NMR analysis of urinary stones. J Urol 164:856–863PubMedCrossRef
22.
go back to reference Duer MJ, Friscic T, Proudfoot D, Reid DG, Schoppet M, Shanahan CM, Skepper JN, Wise ER (2008) Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arterioscler Thromb Vasc Biol 28:2030–2034PubMedCrossRef Duer MJ, Friscic T, Proudfoot D, Reid DG, Schoppet M, Shanahan CM, Skepper JN, Wise ER (2008) Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arterioscler Thromb Vasc Biol 28:2030–2034PubMedCrossRef
23.
go back to reference Reid DG, Jackson GJ, Duer MJ, Rodgers AL (2011) Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J Urol 185:725–730PubMedCrossRef Reid DG, Jackson GJ, Duer MJ, Rodgers AL (2011) Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J Urol 185:725–730PubMedCrossRef
24.
go back to reference Bradley JV, Bridgland LN, Colyer DE, Duer MJ, Friščić T, Gallagher JR, Reid DG, Skepper JN, Trasler CM (2010) NMR of biopolymer–apatite composites: developing a model of the molecular structure of the mineral–matrix interface in calcium phosphate biomaterials. Chem Mater 22:6109–6116CrossRef Bradley JV, Bridgland LN, Colyer DE, Duer MJ, Friščić T, Gallagher JR, Reid DG, Skepper JN, Trasler CM (2010) NMR of biopolymer–apatite composites: developing a model of the molecular structure of the mineral–matrix interface in calcium phosphate biomaterials. Chem Mater 22:6109–6116CrossRef
25.
go back to reference Duer MJ, Friscic T, Murray RC, Reid DG, Wise ER (2009) The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophys J 96:3372–3378PubMedCrossRef Duer MJ, Friscic T, Murray RC, Reid DG, Wise ER (2009) The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophys J 96:3372–3378PubMedCrossRef
26.
go back to reference Reid DG, Shanahan CM, Duer MJ, Arroyo LG, Schoppet M, Brooks RA, Murray RC (2012) Lipids in biocalcification: contrasts and similarities between intimal and medial vascular calcification and bone by NMR. J Lipid Res 53:1569–1575PubMedCrossRef Reid DG, Shanahan CM, Duer MJ, Arroyo LG, Schoppet M, Brooks RA, Murray RC (2012) Lipids in biocalcification: contrasts and similarities between intimal and medial vascular calcification and bone by NMR. J Lipid Res 53:1569–1575PubMedCrossRef
27.
go back to reference Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326PubMedCrossRef Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326PubMedCrossRef
28.
go back to reference Guo W, Morrisett JD, DeBakey ME, Lawrie GM, Hamilton JA (2000) Quantification in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid-state magic angle spinning NMR. Arterioscler Thromb Vasc Biol 20:1630–1636PubMedCrossRef Guo W, Morrisett JD, DeBakey ME, Lawrie GM, Hamilton JA (2000) Quantification in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid-state magic angle spinning NMR. Arterioscler Thromb Vasc Biol 20:1630–1636PubMedCrossRef
29.
go back to reference Anderson HC (1983) Calcific diseases. A concept. Arch Pathol Lab Med 107:341–348PubMed Anderson HC (1983) Calcific diseases. A concept. Arch Pathol Lab Med 107:341–348PubMed
30.
go back to reference Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536PubMedCrossRef Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536PubMedCrossRef
31.
go back to reference Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98:207–217PubMedCrossRef Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98:207–217PubMedCrossRef
32.
go back to reference Johnsson MSA, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82PubMed Johnsson MSA, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82PubMed
33.
go back to reference Wang L, MNancollas GH (2009) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669CrossRef Wang L, MNancollas GH (2009) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669CrossRef
34.
go back to reference Rodgers AL, Allie-Hamdulay S, Jackson G, Tiselius HG (2011) Simulating calcium salt precipitation in the nephron using chemical speciation. Urol Res 39:245–251PubMedCrossRef Rodgers AL, Allie-Hamdulay S, Jackson G, Tiselius HG (2011) Simulating calcium salt precipitation in the nephron using chemical speciation. Urol Res 39:245–251PubMedCrossRef
35.
go back to reference Jiang WG, Chu XB, Wang B, Pan HH, Xu XR, Tang RK (2009) Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization. J Phys Chem B 113:10838–10844PubMedCrossRef Jiang WG, Chu XB, Wang B, Pan HH, Xu XR, Tang RK (2009) Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization. J Phys Chem B 113:10838–10844PubMedCrossRef
36.
go back to reference Morton AR, Iliescu EA, Wilson JW (2002) Nephrology: 1. Investigation and treatment of recurrent kidney stones. Can Med Assoc J 166:213–218 Morton AR, Iliescu EA, Wilson JW (2002) Nephrology: 1. Investigation and treatment of recurrent kidney stones. Can Med Assoc J 166:213–218
37.
go back to reference Mandel S, Tas AC (2010) Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Mater Sci Eng C Mater Biol Appl 30:245–254CrossRef Mandel S, Tas AC (2010) Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Mater Sci Eng C Mater Biol Appl 30:245–254CrossRef
38.
go back to reference Tseng YH, Mou CY, Chan JC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918PubMedCrossRef Tseng YH, Mou CY, Chan JC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918PubMedCrossRef
39.
go back to reference Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591PubMedCrossRef Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591PubMedCrossRef
40.
go back to reference Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 66:777–785PubMedCrossRef Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 66:777–785PubMedCrossRef
41.
go back to reference Pramanik R, Asplin JR, Jackson ME, Williams JC Jr (2008) Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36:251–258PubMedCrossRef Pramanik R, Asplin JR, Jackson ME, Williams JC Jr (2008) Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36:251–258PubMedCrossRef
42.
go back to reference Krambeck AE, Handa SE, Evan AP, Lingeman JE (2010) Brushite stone disease as a consequence of lithotripsy? Urol Res 38:293–299PubMedCrossRef Krambeck AE, Handa SE, Evan AP, Lingeman JE (2010) Brushite stone disease as a consequence of lithotripsy? Urol Res 38:293–299PubMedCrossRef
43.
go back to reference Canales BK, Anderson L, Higgins L, Frethem C, Ressler A, Kim IW, Monga M (2009) Proteomic analysis of a matrix stone: a case report. Urol Res 37:323–329PubMedCrossRef Canales BK, Anderson L, Higgins L, Frethem C, Ressler A, Kim IW, Monga M (2009) Proteomic analysis of a matrix stone: a case report. Urol Res 37:323–329PubMedCrossRef
44.
go back to reference Costa-Bauza A, Barcelo C, Perello J, Grases F (2002) Synergism between the brushite and hydroxyapatite urinary crystallization inhibitors. Int Urol Nephrol 34:447–451PubMedCrossRef Costa-Bauza A, Barcelo C, Perello J, Grases F (2002) Synergism between the brushite and hydroxyapatite urinary crystallization inhibitors. Int Urol Nephrol 34:447–451PubMedCrossRef
45.
go back to reference Pak CYC (1981) Potential etiologic role of brushite in the formation of calcium (renal) stones. J Cryst Growth 53:202–208CrossRef Pak CYC (1981) Potential etiologic role of brushite in the formation of calcium (renal) stones. J Cryst Growth 53:202–208CrossRef
Metadata
Title
Citrate Occurs Widely in Healthy and Pathological Apatitic Biomineral: Mineralized Articular Cartilage, and Intimal Atherosclerotic Plaque and Apatitic Kidney Stones
Authors
David G. Reid
Melinda J. Duer
Graham E. Jackson
Rachel C. Murray
Allen L. Rodgers
Catherine M. Shanahan
Publication date
01-09-2013
Publisher
Springer US
Published in
Calcified Tissue International / Issue 3/2013
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9751-5

Other articles of this Issue 3/2013

Calcified Tissue International 3/2013 Go to the issue