Skip to main content
Log in

Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Apatite and brushite kidney stones share calcium and phosphate as their main inorganic components. We tested the hypothesis that these stone types differ in the amount of proteins present in the stones. Intact stones were intensively analyzed by microcomputed tomography (micro CT) for both morphology (including the volume of voids, i.e., space devoid of X-ray dense material) and mineral type. To extract all proteins present in kidney stones in soluble form we developed a three-step extraction procedure using the ground stone powder. Apatite stones had significantly higher levels of total protein content and void volume compared to brushite stones. The void volume was highly correlated with the total protein contents in all stones (r 2 = 0.61, < 0.0001), and brushite stones contained significantly fewer void regions and proteins than did apatite stones (3.2 ± 4.5% voids for brushite vs. 10.8 ± 11.2% for apatite, < 0.005; 4.1 ± 1.6% protein for brushite vs. 6.0 ± 2.4% for apatite, < 0.03). Morphological observations other than void volume did not correlate with protein content of stones, and neither did the presence or absence of minor mineral components. Our results show that protein content of brushite and apatite stones is higher than that was previously thought, and also suggest that micro CT-visible void regions are related to the presence of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823

    Article  PubMed  Google Scholar 

  2. Morton AR, Wooltorton E (2002) Nephrology in practice: a new series. CMAJ 166:195

    PubMed  Google Scholar 

  3. Herring LC (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:545–562

    PubMed  CAS  Google Scholar 

  4. Mandel NS, Mandel GS (1989) Urinary tract stone disease in the United States veteran population. Geographical analysis of variations in composition. J Urol 142:1516–1521

    PubMed  CAS  Google Scholar 

  5. Tefekli A, Esen T, Ziylan O, Erol B, Armagan A, Ander H, Akinci M (2003) Metabolic risk factors in pediatric and adult calcium oxalate urinary stone formers: is there any difference? Urol Int 70:273–277

    Article  PubMed  CAS  Google Scholar 

  6. Mandel N, Mandel I, Fryjoff K, Rejniak T, Mandel G (2003) Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J Urol 169:2026–2029

    Article  PubMed  Google Scholar 

  7. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

    PubMed  CAS  Google Scholar 

  8. Matlaga BR, Williams JC Jr, Kim SC, Kuo RL, Evan AP, Bledsoe SB, Coe FL, Worcester EM, Munch LC, Lingeman JE (2006) Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 175:1720–1724

    Article  PubMed  Google Scholar 

  9. Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 66:777–785

    Article  PubMed  CAS  Google Scholar 

  10. Williams JC Jr, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE (2003) Variability of renal stone fragility in shock wave lithotripsy. Urology 61:1092–1096

    Article  PubMed  Google Scholar 

  11. Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591

    Article  PubMed  CAS  Google Scholar 

  12. Wang LJ, Wong YC, Chuang CK, Chu SH, Chen CS, See LC, Chiang YJ (2005) Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics determined by unenhanced helical computed tomography: a multivariate analysis. Eur Radiol 15:2238–2243

    Article  PubMed  Google Scholar 

  13. Dretler SP, Spencer BA (2001) CT and stone fragility. J Endourol 15:31–36

    Article  PubMed  CAS  Google Scholar 

  14. Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676

    Article  PubMed  Google Scholar 

  15. Kim SC, Burns EK, Lingeman JE, Paterson RF, McAteer JA, Williams JC Jr (2007) Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res 35:319–324

    Article  PubMed  Google Scholar 

  16. Zarse CA, Hameed TA, Jackson ME, Pishchalnikov YA, Lingeman JE, McAteer JA, Williams JC Jr (2007) CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res 35:201–206

    Article  PubMed  Google Scholar 

  17. Warpehoski MA, Buscemi PJ, Osborn DC, Finlayson B, Goldberg EP (1981) Distribution of organic matrix in calcium oxalate renal calculi. Calcif Tissue Int 33:211–222

    Article  PubMed  CAS  Google Scholar 

  18. King JS Jr, Boyce WH (1957) Amino acid and carbohydrate composition of the mucoprotein matrix in various calculi. Proc Soc Exp Biol Med 95:183–187

    PubMed  CAS  Google Scholar 

  19. Boyce WH (1968) Organic matrix of human urinary concretions. Am J Med 45:673–683

    Article  PubMed  CAS  Google Scholar 

  20. Finlayson B, Vermeulen CW, Stewart EJ (1961) Stone matrix and mucoprotein from urine. J Urol 86:355–363

    PubMed  CAS  Google Scholar 

  21. Srinivasan S, Kalaiselvi P, Varalakshmi P (2006) Epitaxial deposition of calcium oxalate on uric acid rich stone matrix is induced by a 29 kDa protein. Clin Chim Acta 364:267–274

    Article  PubMed  CAS  Google Scholar 

  22. Roberts SD, Resnick MI (1986) Glycosaminoglycans content of stone matrix. J Urol 135:1078–1083

    PubMed  CAS  Google Scholar 

  23. Ibrahim A, Shaker Y, Hawary M, Fayek K et al (1985) Immunochemical studies of serum, urine, and calculus proteins in urolithiasis. Clin Physiol Biochem 3:16–22

    PubMed  CAS  Google Scholar 

  24. Williams JC Jr, Zarse CA, Jackson ME, Witzmann FA, McAteer JA (2006) Variability of protein content in calcium oxalate monohydrate stones. J Endourol 20:560–564

    Article  PubMed  Google Scholar 

  25. Lian JB, Prien EL Jr, Glimcher MJ, Gallop PM (1977) The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J Clin Invest 59:1151–1157

    Article  PubMed  CAS  Google Scholar 

  26. Ryall R (1993) The scientific basis of calcium oxalate urolithiasis. World J Urol 11:59–65

    Article  PubMed  CAS  Google Scholar 

  27. Boyce WH, Pool CS, Meschan I, King JS Jr (1958) Organic matrix of urinary calculi; microradiographic comparison of crystalline structure with microscopic and histochemical studies. Acta radiol 50:543–560

    Article  PubMed  CAS  Google Scholar 

  28. Daudon M, Protat MF, Reveillaud RJ (1978) Analysis of gallstones by infrared spectrophotometry. Advantages and limits of the method (author’s transl). Ann Biol Clin (Paris) 36:475–489

    CAS  Google Scholar 

  29. Maurice-Estepa L, Levillain P, Lacour B, Daudon M (1999) Crystalline phase differentiation in urinary calcium phosphate and magnesium phosphate calculi. Scand J Urol Nephrol 33:299–305

    Article  PubMed  CAS  Google Scholar 

  30. Zarse CA, McAteer JA, Sommer AJ, Kim SC, Hatt EK, Lingeman JE, Evan AP, Williams JC Jr (2004) Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol 4:15

    Article  PubMed  Google Scholar 

  31. Binette JP, Binette MB (1991) The matrix of urinary tract stones: protein composition, antigenicity, and ultrastructure. Scanning Microsc 5:1029–1034

    PubMed  CAS  Google Scholar 

  32. Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: a review. J Urol 76:213–227

    PubMed  CAS  Google Scholar 

  33. Fuller M, Griffiths P (1978) Diffuse reflectance measurements by infrared Fourier transform spectrometry. Anal Chem 50:1906–1910

    Article  CAS  Google Scholar 

  34. Spector AR, Gray A, Prien EL Jr (1976) Kidney stone matrix. Differences in acidic protein composition. Invest Urol 13:387–389

    PubMed  CAS  Google Scholar 

  35. Jones WT, Resnick MI (1990) The characterization of soluble matrix proteins in selected human renal calculi using two-dimensional polyacrylamide gel electrophoresis. J Urol 144:1010–1014

    PubMed  CAS  Google Scholar 

  36. Siddiqui AA, Sultana T, Buchholz NP, Waqar MA, Talati J (1998) Proteins in renal stones and urine of stone formers. Urol Res 26:383–388

    Article  PubMed  CAS  Google Scholar 

  37. Dussol B, Geider S, Lilova A, Leonetti F, Dupuy P, Daudon M, Berland Y, Dagorn JC, Verdier JM (1995) Analysis of the soluble organic matrix of five morphologically different kidney stones. Evidence for a specific role of albumin in the constitution of the stone protein matrix. Urol Res 23:45–51

    Article  PubMed  CAS  Google Scholar 

  38. Dawson CJ, Grover PK, Kanellos J, Pham H, Kupczyk G, Oates A, Ryall RL (1998) Inter-alpha-inhibitor in calcium stones. Clin Sci (Lond) 95:187–193

    Article  CAS  Google Scholar 

  39. Sugimoto T, Funae Y, Rubben H, Nishio S, Hautmann R, Lutzeyer W (1985) Resolution of proteins in the kidney stone matrix using high-performance liquid chromatography. Eur Urol 11:334–340

    PubMed  CAS  Google Scholar 

  40. Mushtaq S, Siddiqui AA, Naqvi ZA, Rattani A, Talati J, Palmberg C, Shafqat J (2007) Identification of myeloperoxidase, alpha-defensin and calgranulin in calcium oxalate renal stones. Clin Chim Acta 384:41–47

    Article  PubMed  CAS  Google Scholar 

  41. Kaneko K, Yamanobe T, Nakagomi K, Mawatari K, Onoda M, Fujimori S (2004) Detection of protein Z in a renal calculus composed of calcium oxalate monohydrate with the use of liquid chromatography-mass spectrometry/mass spectrometry following two-dimensional polyacrylamide gel electrophoresis separation. Anal Biochem 324:191–196

    Article  PubMed  CAS  Google Scholar 

  42. Khan SR, Hackett RL (1984) Microstructure of decalcified human calcium oxalate urinary stones. Scan Electron Microsc 935–941

Download references

Acknowledgments

We would like to thank Dr. James E. Lingeman and Beck Analytical Services for providing the stones for this research. This research was supported by National Institute of Health grants 6R44DK071375-04 and R01 DK59933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocky Pramanik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramanik, R., Asplin, J.R., Jackson, M.E. et al. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36, 251–258 (2008). https://doi.org/10.1007/s00240-008-0151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-008-0151-7

Keywords

Navigation