Skip to main content
Top
Published in: Calcified Tissue International 1/2013

01-07-2013 | Original Research

Ubiquitin-Like Domain of IKKβ Regulates Osteoclastogenesis and Osteolysis

Authors: Yanhong Zhang, Jesse E. Otero, Yousef Abu-Amer

Published in: Calcified Tissue International | Issue 1/2013

Login to get access

Abstract

The transcription factor NF-κB family is central for osteoclastogenesis and inflammatory osteolysis. Activation of NF-κB dimers is regulated by a kinase complex predominantly containing IKKα (IKK1), IKKβ (IKK2), and a regulatory subunit, IKKγ/NEMO. IKKα and IKKβ catalyze the cytoplasmic liberation and nuclear translocation of various NF-κB subunits. The requirement of IKKα and IKKβ for normal bone homeostasis has been established. Congruently, mice devoid of IKKα or IKKβ exhibit in vitro and in vivo defects in osteoclastogenesis, and IKKβ-null mice are refractory to inflammatory arthritis and osteolysis. To better understand the molecular mechanism underlying IKKβ function in bone homeostasis and bone pathologies, we conducted structure–function analysis to determine IKKβ functional domains in osteoclasts. IKKβ encompasses several domains, of which the ubiquitination-like domain (ULD) has been shown essential for IKKβ activation. In this study, we examined the role of ULD in IKKβ-mediated NF-κB activation in osteoclast precursors and its contribution to osteoclastogenesis and osteolysis. We generated and virally introduced IKKβ in which the ULD domain has been deleted (IKKβ∆ULD) into osteoclast progenitors. The results show that deletion of ULD diminishes IKKβ activity and that IKKβ∆ULD strongly inhibits osteoclastogenesis. In addition, unlike wild type (WT)-IKKβ, IKKβ∆ULD fail to restore RANKL-induced osteoclastogenesis by IKKβ-null precursors. Finally, we provide evidence that IKKβ∆ULD blocks inflammatory osteolysis in a model of murine calvarial osteolysis. Thus, we identified the ULD as crucial for IKKβ activity and osteoclastogenesis and found that ULD-deficient IKKβ is a potent inhibitor of osteoclastogenesis and osteolysis.
Literature
1.
go back to reference Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355PubMedCrossRef Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355PubMedCrossRef
2.
3.
6.
go back to reference Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRef Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRef
7.
go back to reference Karin M, Yamamoto Y, Wang M (2004) The IKK NF-kB system: a treasure trove for drug development. Nat Rev 3:17–26CrossRef Karin M, Yamamoto Y, Wang M (2004) The IKK NF-kB system: a treasure trove for drug development. Nat Rev 3:17–26CrossRef
9.
go back to reference Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375PubMedCrossRef Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375PubMedCrossRef
10.
go back to reference Boyce B, Xing L, Fransozo G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kB in bone cells. Bone 25:137–139PubMedCrossRef Boyce B, Xing L, Fransozo G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kB in bone cells. Bone 25:137–139PubMedCrossRef
11.
go back to reference Abu-Amer Y, Darwech I, Otero J (2008) Role of the NF-kappaB axis in immune modulation of osteoclasts and bone loss. Autoimmunity 41:204–211PubMedCrossRef Abu-Amer Y, Darwech I, Otero J (2008) Role of the NF-kappaB axis in immune modulation of osteoclasts and bone loss. Autoimmunity 41:204–211PubMedCrossRef
12.
go back to reference Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthopaed Res 24:1358–1365CrossRef Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthopaed Res 24:1358–1365CrossRef
13.
go back to reference Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222PubMedCrossRef Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222PubMedCrossRef
14.
go back to reference Rehman KK, Bertera S, Bottino R, Balamurugan AN, Mai JC, Mi Z, Trucco M, Robbins PD (2003) Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor Nemo-binding domain peptide. J Biol Chem 278:9862–9868PubMedCrossRef Rehman KK, Bertera S, Bottino R, Balamurugan AN, Mai JC, Mi Z, Trucco M, Robbins PD (2003) Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor Nemo-binding domain peptide. J Biol Chem 278:9862–9868PubMedCrossRef
15.
go back to reference Soysa NS, Alles N, Shimokawa H, Jimi E, Aoki K, Ohya K (2009) Inhibition of the classical NF-kappa B pathway prevents osteoclast bone-resorbing activity. J Bone Miner Metab 27:131–139PubMedCrossRef Soysa NS, Alles N, Shimokawa H, Jimi E, Aoki K, Ohya K (2009) Inhibition of the classical NF-kappa B pathway prevents osteoclast bone-resorbing activity. J Bone Miner Metab 27:131–139PubMedCrossRef
16.
go back to reference Darwech I, Otero J, Alhawagri M, Dai S, Abu-Amer Y (2009) Impediment of NEMO oligomerization inhibits osteoclastogenesis and osteolysis. J Cell Biochem 108:1337–1345PubMedCrossRef Darwech I, Otero J, Alhawagri M, Dai S, Abu-Amer Y (2009) Impediment of NEMO oligomerization inhibits osteoclastogenesis and osteolysis. J Cell Biochem 108:1337–1345PubMedCrossRef
17.
go back to reference Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical +NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694PubMedCrossRef Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical +NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694PubMedCrossRef
18.
go back to reference Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294PubMedCrossRef Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294PubMedCrossRef
19.
go back to reference Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285:25522–25530PubMedCrossRef Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285:25522–25530PubMedCrossRef
20.
go back to reference Otero JE, Dai S, Foglia D, Alhawagri M, Vacher J, Pasparakis M, Abu-Amer Y (2008) Defective osteoclastogenesis by IKKbeta-null precursors is a result of receptor activator of NF-kappaB ligand (RANKL)-induced JNK-dependent apoptosis and impaired differentiation. J Biol Chem 283:24546–24553PubMedCrossRef Otero JE, Dai S, Foglia D, Alhawagri M, Vacher J, Pasparakis M, Abu-Amer Y (2008) Defective osteoclastogenesis by IKKbeta-null precursors is a result of receptor activator of NF-kappaB ligand (RANKL)-induced JNK-dependent apoptosis and impaired differentiation. J Biol Chem 283:24546–24553PubMedCrossRef
21.
go back to reference Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066PubMedCrossRef Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066PubMedCrossRef
22.
go back to reference Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL (2000) A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther 7:1034–1038PubMedCrossRef Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL (2000) A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther 7:1034–1038PubMedCrossRef
23.
go back to reference Drouet C, Shakhov AN, Jongeneel CV (1991) Enhancers and transcription factors controlling the inducibility of the tumor necrosis factor-alpha promoter in primary macrophages. J Immunol 147:1694–1700PubMed Drouet C, Shakhov AN, Jongeneel CV (1991) Enhancers and transcription factors controlling the inducibility of the tumor necrosis factor-alpha promoter in primary macrophages. J Immunol 147:1694–1700PubMed
24.
go back to reference May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in Ikappa B-kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539PubMedCrossRef May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in Ikappa B-kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539PubMedCrossRef
25.
go back to reference May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem 277:45992–46000CrossRef May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem 277:45992–46000CrossRef
26.
go back to reference Ruocco MG, Karin M (2005) IKK{beta} as a target for treatment of inflammation induced bone loss. Ann Rheum Dis 64(Suppl 4):iv81–iv85PubMedCrossRef Ruocco MG, Karin M (2005) IKK{beta} as a target for treatment of inflammation induced bone loss. Ann Rheum Dis 64(Suppl 4):iv81–iv85PubMedCrossRef
27.
go back to reference Abbas S, Abu-Amer Y (2003) Dominant-negative IkappaB facilitates apoptosis of osteoclasts by tumor necrosis factor-alpha. J Biol Chem 278:20077–20082CrossRef Abbas S, Abu-Amer Y (2003) Dominant-negative IkappaB facilitates apoptosis of osteoclasts by tumor necrosis factor-alpha. J Biol Chem 278:20077–20082CrossRef
28.
go back to reference Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL (2001) TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. J Biol Chem 276:30499–30503CrossRef Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL (2001) TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. J Biol Chem 276:30499–30503CrossRef
29.
go back to reference Clohisy J, Hirayama T, Frazier E, Han S, Abu-Amer Y (2004) NF-kB signaing blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res 22:13–20CrossRef Clohisy J, Hirayama T, Frazier E, Han S, Abu-Amer Y (2004) NF-kB signaing blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res 22:13–20CrossRef
30.
go back to reference Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y (2003) Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol 171:5547–5553 Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y (2003) Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol 171:5547–5553
31.
go back to reference Ruocco MG, Karin M (2007) Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 602:125–134PubMedCrossRef Ruocco MG, Karin M (2007) Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 602:125–134PubMedCrossRef
32.
go back to reference Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedCrossRef Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedCrossRef
33.
go back to reference Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87PubMedCrossRef Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87PubMedCrossRef
34.
go back to reference Carter RS, Pennington KN, Arrate P, Oltz EM, Ballard DW (2005) Site-specific Monoubiquitination of I{kappa}B kinase IKKbeta regulates its phosphorylation and persistent activation. J Biol Chem 280:43272–43279PubMedCrossRef Carter RS, Pennington KN, Arrate P, Oltz EM, Ballard DW (2005) Site-specific Monoubiquitination of I{kappa}B kinase IKKbeta regulates its phosphorylation and persistent activation. J Biol Chem 280:43272–43279PubMedCrossRef
35.
go back to reference Carter RS, Pennington KN, Ungurait BJ, Arrate P, Ballard DW (2003) Signal-induced ubiquitination of I{kappa}B kinase-{beta}. J Biol Chem 278:48903–48906PubMedCrossRef Carter RS, Pennington KN, Ungurait BJ, Arrate P, Ballard DW (2003) Signal-induced ubiquitination of I{kappa}B kinase-{beta}. J Biol Chem 278:48903–48906PubMedCrossRef
36.
go back to reference Alhawagri M, Yamanaka Y, Ballard D, Oltz E, Abu-Amer Y (2012) Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30:554–560PubMedCrossRef Alhawagri M, Yamanaka Y, Ballard D, Oltz E, Abu-Amer Y (2012) Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30:554–560PubMedCrossRef
Metadata
Title
Ubiquitin-Like Domain of IKKβ Regulates Osteoclastogenesis and Osteolysis
Authors
Yanhong Zhang
Jesse E. Otero
Yousef Abu-Amer
Publication date
01-07-2013
Publisher
Springer New York
Published in
Calcified Tissue International / Issue 1/2013
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9735-5

Other articles of this Issue 1/2013

Calcified Tissue International 1/2013 Go to the issue