Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2006

01-02-2005 | Review

Osteoclasts; culprits in inflammatory osteolysis

Author: Steven L Teitelbaum

Published in: Arthritis Research & Therapy | Issue 1/2006

Login to get access

Abstract

Periarticular osteolysis, a crippling complication of rheumatoid arthritis, is the product of enhanced osteoclast recruitment and activation. The osteoclast, which is a member of the monocyte/macrophage family, is the exclusive bone resorptive cell, and its differentiation and activation are under the aegis of a variety of cytokines. Receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor are the essential osteoclastogenic cytokines and are increased in inflammatory joint disease. Tumor necrosis factor-α, which perpetrates arthritic bone loss, exerts its osteoclastogenic effect in the context of RANKL with which it synergizes. Achieving an understanding of the mechanisms by which the three cytokines affect the osteoclast has resulted in a number of active and candidate therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smolen JS, Steiner G: Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov. 2003, 2: 473-488. 10.1038/nrd1109.CrossRefPubMed Smolen JS, Steiner G: Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov. 2003, 2: 473-488. 10.1038/nrd1109.CrossRefPubMed
2.
go back to reference Scott DL, Pugner K, Kaarela K, Doyle DV, Woolf A, Holmes J, Hieke K: The links between joint damage and disability in rheumatoid arthritis. Rheumatology. 2000, 39: 122-132. 10.1093/rheumatology/39.2.122.CrossRefPubMed Scott DL, Pugner K, Kaarela K, Doyle DV, Woolf A, Holmes J, Hieke K: The links between joint damage and disability in rheumatoid arthritis. Rheumatology. 2000, 39: 122-132. 10.1093/rheumatology/39.2.122.CrossRefPubMed
3.
go back to reference Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM: Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003, 111: 821-831. 10.1172/JCI200316069.PubMedCentralCrossRefPubMed Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM: Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003, 111: 821-831. 10.1172/JCI200316069.PubMedCentralCrossRefPubMed
4.
go back to reference Goldring SR, Clark CR, Wright TM: The problem in total joint arthroplasty: aseptic loosening. Journal of Bone & Joint Surgery – American Volume. 1993, 75: 799-801. Goldring SR, Clark CR, Wright TM: The problem in total joint arthroplasty: aseptic loosening. Journal of Bone & Joint Surgery – American Volume. 1993, 75: 799-801.
5.
go back to reference Tolar J, Teitelbaum SL, Orchard PJ: Osteopetrosis. N Engl J Med. 2004, 351: 2839-2849. 10.1056/NEJMra040952.CrossRefPubMed Tolar J, Teitelbaum SL, Orchard PJ: Osteopetrosis. N Engl J Med. 2004, 351: 2839-2849. 10.1056/NEJMra040952.CrossRefPubMed
6.
go back to reference Coccia PF, Krivit W, Cervenka J, Clawson C, Kersey JH, Kim TH, Nesbit ME, Ramsay NK, Warkentin PI, Teitelbaum SL, et al: Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980, 302: 701-708.CrossRefPubMed Coccia PF, Krivit W, Cervenka J, Clawson C, Kersey JH, Kim TH, Nesbit ME, Ramsay NK, Warkentin PI, Teitelbaum SL, et al: Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980, 302: 701-708.CrossRefPubMed
7.
go back to reference Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Suda T: Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA. 1990, 87: 7260-7264. 10.1073/pnas.87.18.7260.PubMedCentralCrossRefPubMed Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Suda T: Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA. 1990, 87: 7260-7264. 10.1073/pnas.87.18.7260.PubMedCentralCrossRefPubMed
8.
go back to reference Teitelbaum SL: Bone resorption by osteoclasts. Science. 2000, 289: 1504-1508. 10.1126/science.289.5484.1504.CrossRefPubMed Teitelbaum SL: Bone resorption by osteoclasts. Science. 2000, 289: 1504-1508. 10.1126/science.289.5484.1504.CrossRefPubMed
9.
go back to reference Teitelbaum SL: Osteoporosis and Integrins. J Clin Endocrinol Metab. 2005, 90: 2466-2468. 10.1210/jc.2005-0338.CrossRefPubMed Teitelbaum SL: Osteoporosis and Integrins. J Clin Endocrinol Metab. 2005, 90: 2466-2468. 10.1210/jc.2005-0338.CrossRefPubMed
10.
go back to reference Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA: Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem. 2000, 275: 11993-12002. 10.1074/jbc.275.16.11993.CrossRefPubMed Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA: Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem. 2000, 275: 11993-12002. 10.1074/jbc.275.16.11993.CrossRefPubMed
11.
go back to reference Vaananen HK, Horton M: The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci. 1995, 108: 2729-2732.PubMed Vaananen HK, Horton M: The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci. 1995, 108: 2729-2732.PubMed
12.
go back to reference Abu-Amer Y, Ross FP, Schlesinger P, Tondravi MM, Teitelbaum SL: Substrate recognition by osteoclast precursors induces s-crc/microtubule association. J Cell Biol. 1997, 137: 247-258. 10.1083/jcb.137.1.247.PubMedCentralCrossRefPubMed Abu-Amer Y, Ross FP, Schlesinger P, Tondravi MM, Teitelbaum SL: Substrate recognition by osteoclast precursors induces s-crc/microtubule association. J Cell Biol. 1997, 137: 247-258. 10.1083/jcb.137.1.247.PubMedCentralCrossRefPubMed
13.
go back to reference Pavlos NJ, Xu J, Riedel D, Yeoh JSG, Teitelbaum SL, Papadimitriou JM, Jahn R, Ross FP, Zheng MH: Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol Cell Biol. 2005, 25: 5253-5269. 10.1128/MCB.25.12.5253-5269.2005.PubMedCentralCrossRefPubMed Pavlos NJ, Xu J, Riedel D, Yeoh JSG, Teitelbaum SL, Papadimitriou JM, Jahn R, Ross FP, Zheng MH: Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol Cell Biol. 2005, 25: 5253-5269. 10.1128/MCB.25.12.5253-5269.2005.PubMedCentralCrossRefPubMed
14.
go back to reference Blair HC, Teitelbaum SL, Ghiselli R, Gluck S: Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989, 245: 855-857. 10.1126/science.2528207.CrossRefPubMed Blair HC, Teitelbaum SL, Ghiselli R, Gluck S: Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989, 245: 855-857. 10.1126/science.2528207.CrossRefPubMed
15.
go back to reference Mattsson JP, Schlesinger PH, Keeling DJ, Teitelbaum SL, Stone DK, Xie X-S: Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. J Biol Chem. 1994, 269: 24979-24982.PubMed Mattsson JP, Schlesinger PH, Keeling DJ, Teitelbaum SL, Stone DK, Xie X-S: Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. J Biol Chem. 1994, 269: 24979-24982.PubMed
16.
go back to reference Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, et al: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000, 25: 343-346. 10.1038/77131.CrossRefPubMed Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, et al: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000, 25: 343-346. 10.1038/77131.CrossRefPubMed
17.
go back to reference Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Carano A, Grano M, Santacroce G, Schlesinger P, Zambonin-Zallone A: Cytoplasmic pH is regulated in isolated avian osteoclasts by a Cl-/HCO3 exchanger. Boll Soc Ital Biol Sper. 1989, 65: 589-595.PubMed Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Carano A, Grano M, Santacroce G, Schlesinger P, Zambonin-Zallone A: Cytoplasmic pH is regulated in isolated avian osteoclasts by a Cl-/HCO3 exchanger. Boll Soc Ital Biol Sper. 1989, 65: 589-595.PubMed
18.
go back to reference Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC: Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem. 1997, 272: 18636-18643. 10.1074/jbc.272.30.18636.CrossRefPubMed Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC: Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem. 1997, 272: 18636-18643. 10.1074/jbc.272.30.18636.CrossRefPubMed
19.
go back to reference Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001, 104: 205-215. 10.1016/S0092-8674(01)00206-9.CrossRefPubMed Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001, 104: 205-215. 10.1016/S0092-8674(01)00206-9.CrossRefPubMed
20.
go back to reference Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL: Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol. 1986, 102: 1164-1172. 10.1083/jcb.102.4.1164.CrossRefPubMed Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL: Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol. 1986, 102: 1164-1172. 10.1083/jcb.102.4.1164.CrossRefPubMed
21.
go back to reference Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996, 273: 1236-1238. 10.1126/science.273.5279.1236.CrossRefPubMed Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996, 273: 1236-1238. 10.1126/science.273.5279.1236.CrossRefPubMed
22.
go back to reference Teitelbaum SL, Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003, 4: 638-649. 10.1038/nrg1122.CrossRefPubMed Teitelbaum SL, Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003, 4: 638-649. 10.1038/nrg1122.CrossRefPubMed
23.
go back to reference Faccio R, Novack DV, Zallone A, Ross FP, Teitelbaum SL: Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by β3 integrin. J Cell Biol. 2003, 162: 499-509. 10.1083/jcb.200212082.PubMedCentralCrossRefPubMed Faccio R, Novack DV, Zallone A, Ross FP, Teitelbaum SL: Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by β3 integrin. J Cell Biol. 2003, 162: 499-509. 10.1083/jcb.200212082.PubMedCentralCrossRefPubMed
24.
go back to reference McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL: Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000, 105: 433-440.PubMedCentralCrossRefPubMed McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL: Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000, 105: 433-440.PubMedCentralCrossRefPubMed
25.
go back to reference Engleman VW, Nickols GA, Ross FP, Horton MA, Settle SL, Ruminski PG, Teitelbaum SL: A peptidomimetic antagonist of the αvβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest. 1997, 99: 2284-2292.PubMedCentralCrossRefPubMed Engleman VW, Nickols GA, Ross FP, Horton MA, Settle SL, Ruminski PG, Teitelbaum SL: A peptidomimetic antagonist of the αvβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest. 1997, 99: 2284-2292.PubMedCentralCrossRefPubMed
26.
go back to reference Murphy MG, Cerchio K, Stoch SA, Gottesdiener K, Wu M, Recker R, for the L-000845704 Study Group: Effect of L-000845704, an αVβ3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab. 2005, 90: 2022-2028. 10.1210/jc.2004-2126.CrossRefPubMed Murphy MG, Cerchio K, Stoch SA, Gottesdiener K, Wu M, Recker R, for the L-000845704 Study Group: Effect of L-000845704, an αVβ3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab. 2005, 90: 2022-2028. 10.1210/jc.2004-2126.CrossRefPubMed
27.
go back to reference Wilder RL: Integrin αVβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis. 2002, 61: 96ii-99.CrossRef Wilder RL: Integrin αVβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis. 2002, 61: 96ii-99.CrossRef
28.
go back to reference Faccio R, Zallone A, Ross FP, Teitelbaum SL: c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation. J Clin Invest. 2003, 111: 749-758. 10.1172/JCI200316924.PubMedCentralCrossRefPubMed Faccio R, Zallone A, Ross FP, Teitelbaum SL: c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation. J Clin Invest. 2003, 111: 749-758. 10.1172/JCI200316924.PubMedCentralCrossRefPubMed
29.
go back to reference Grigoriadis AE, Wang Z-Q, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF: c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994, 266: 443-448. 10.1126/science.7939685.CrossRefPubMed Grigoriadis AE, Wang Z-Q, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF: c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994, 266: 443-448. 10.1126/science.7939685.CrossRefPubMed
30.
go back to reference Razzouk S, Lieberherr M, Cournot G: Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol. 1999, 78: 249-255.CrossRefPubMed Razzouk S, Lieberherr M, Cournot G: Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol. 1999, 78: 249-255.CrossRefPubMed
31.
go back to reference Faccio R, Teitelbaum SL, Fujikawa K, Chappel JC, Zallone A, Tybulewicz VL, Ross FP, Swat W: Vav3 regulates osteoclast function and bone mass. Nat Med. 2005, 11: 284-290. 10.1038/nm1194.CrossRefPubMed Faccio R, Teitelbaum SL, Fujikawa K, Chappel JC, Zallone A, Tybulewicz VL, Ross FP, Swat W: Vav3 regulates osteoclast function and bone mass. Nat Med. 2005, 11: 284-290. 10.1038/nm1194.CrossRefPubMed
32.
go back to reference Faccio R, Zou W, Colaianni G, Teitelbaum SL, Ross FP: High dose M-CSF partially rescues the Dap12-/- osteoclast phenotype. J Cell Biochem. 2003, 90: 871-883. 10.1002/jcb.10694.CrossRefPubMed Faccio R, Zou W, Colaianni G, Teitelbaum SL, Ross FP: High dose M-CSF partially rescues the Dap12-/- osteoclast phenotype. J Cell Biochem. 2003, 90: 871-883. 10.1002/jcb.10694.CrossRefPubMed
33.
go back to reference Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR: Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 1992, 90: 1622-1627.PubMedCentralCrossRefPubMed Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR: Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 1992, 90: 1622-1627.PubMedCentralCrossRefPubMed
34.
go back to reference Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL: Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its p55 receptor. J Clin Invest. 1997, 100: 1557-1565.PubMedCentralCrossRefPubMed Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL: Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its p55 receptor. J Clin Invest. 1997, 100: 1557-1565.PubMedCentralCrossRefPubMed
35.
go back to reference Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL: Tumor necrosis factor-α mediates orthopedic implant osteolysis. Am J Pathol. 1999, 154: 203-210.PubMedCentralCrossRefPubMed Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL: Tumor necrosis factor-α mediates orthopedic implant osteolysis. Am J Pathol. 1999, 154: 203-210.PubMedCentralCrossRefPubMed
36.
go back to reference Shakespeare WC, Metcalf CAR, Wang Y, Sundaramoorthi R, Keenan T, Weigele M, Bohacek RS, Dalgarno DC, Sawyer TK: Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr Opin Drug Discov Devel. 2003, 6: 729-741.PubMed Shakespeare WC, Metcalf CAR, Wang Y, Sundaramoorthi R, Keenan T, Weigele M, Bohacek RS, Dalgarno DC, Sawyer TK: Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr Opin Drug Discov Devel. 2003, 6: 729-741.PubMed
37.
go back to reference Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, et al: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998, 93: 165-176. 10.1016/S0092-8674(00)81569-X.CrossRefPubMed Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, et al: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998, 93: 165-176. 10.1016/S0092-8674(00)81569-X.CrossRefPubMed
38.
go back to reference Yoshida H, Hayashi S-I, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S-I: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990, 345: 442-444. 10.1038/345442a0.CrossRefPubMed Yoshida H, Hayashi S-I, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S-I: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990, 345: 442-444. 10.1038/345442a0.CrossRefPubMed
39.
go back to reference Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DL: Crystal structure of TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest. 2001, 108: 971-980. 10.1172/JCI200113890.PubMedCentralCrossRefPubMed Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DL: Crystal structure of TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest. 2001, 108: 971-980. 10.1172/JCI200113890.PubMedCentralCrossRefPubMed
40.
go back to reference Lee SK, Lorenzo JA: Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinol. 1999, 140: 3552-3561. 10.1210/en.140.8.3552. Lee SK, Lorenzo JA: Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinol. 1999, 140: 3552-3561. 10.1210/en.140.8.3552.
41.
go back to reference Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL: TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000, 106: 1481-1488.PubMedCentralCrossRefPubMed Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL: TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000, 106: 1481-1488.PubMedCentralCrossRefPubMed
42.
go back to reference Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B, Wei S, Takeshita S, Novack DV, Silva MJ, et al: Marrow stromal cells and osteoclast precursors differentially contribute to TNF-α induced osteoclastogenesis in vivo. J Immunol. 2004, 173: 4838-4846.CrossRefPubMed Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B, Wei S, Takeshita S, Novack DV, Silva MJ, et al: Marrow stromal cells and osteoclast precursors differentially contribute to TNF-α induced osteoclastogenesis in vivo. J Immunol. 2004, 173: 4838-4846.CrossRefPubMed
43.
go back to reference Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, et al: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999, 402: 304-309. 10.1038/46303.CrossRefPubMed Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, et al: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999, 402: 304-309. 10.1038/46303.CrossRefPubMed
44.
go back to reference Kadono Y, Okada F, Perchonock C, Jang HD, Lee SY, Kim N, Choi Y: Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Reports. 2005, 6: 171-176. 10.1038/sj.embor.7400345.PubMedCentralCrossRefPubMed Kadono Y, Okada F, Perchonock C, Jang HD, Lee SY, Kim N, Choi Y: Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Reports. 2005, 6: 171-176. 10.1038/sj.embor.7400345.PubMedCentralCrossRefPubMed
45.
go back to reference Gohda J, Akiyama T, Koga T, Takayanagi H, Tanaka S, Inoue J-i: RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J. 2005, 24: 790-799. 10.1038/sj.emboj.7600564.PubMedCentralCrossRefPubMed Gohda J, Akiyama T, Koga T, Takayanagi H, Tanaka S, Inoue J-i: RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J. 2005, 24: 790-799. 10.1038/sj.emboj.7600564.PubMedCentralCrossRefPubMed
46.
go back to reference Bai S, Kitaura H, Zhao H, Chen J, Muller JM, Schule R, Darnay B, Novack DV, Ross FP, Teitelbaum SL: FHL2 inhibits the activated osteoclast in a TRAF6 dependent manner. J Clin Invest. 2005, 115: 2742-2751. 10.1172/JCI24921.PubMedCentralCrossRefPubMed Bai S, Kitaura H, Zhao H, Chen J, Muller JM, Schule R, Darnay B, Novack DV, Ross FP, Teitelbaum SL: FHL2 inhibits the activated osteoclast in a TRAF6 dependent manner. J Clin Invest. 2005, 115: 2742-2751. 10.1172/JCI24921.PubMedCentralCrossRefPubMed
47.
go back to reference Nakamura I, Kadono Y, Takayanagi H, Jimi E, Miyazaki T, Oda H, Nakamura K, Tanaka S, Rodan GA, Duong LT: IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol. 2002, 168: 5103-5109.CrossRefPubMed Nakamura I, Kadono Y, Takayanagi H, Jimi E, Miyazaki T, Oda H, Nakamura K, Tanaka S, Rodan GA, Duong LT: IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol. 2002, 168: 5103-5109.CrossRefPubMed
48.
go back to reference Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC: A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem. 2002, 277: 44347-44356. 10.1074/jbc.M202009200.CrossRefPubMed Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC: A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem. 2002, 277: 44347-44356. 10.1074/jbc.M202009200.CrossRefPubMed
49.
go back to reference Wang MW-H, Wei S, Faccio R, Takeshita S, Tebas P, Powderly WG, Teitelbaum SL, Ross FP: The HIV protease inhibitor riton-avir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest. 2004, 114: 206-213. 10.1172/JCI200415797.PubMedCentralCrossRefPubMed Wang MW-H, Wei S, Faccio R, Takeshita S, Tebas P, Powderly WG, Teitelbaum SL, Ross FP: The HIV protease inhibitor riton-avir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest. 2004, 114: 206-213. 10.1172/JCI200415797.PubMedCentralCrossRefPubMed
50.
go back to reference Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et al: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997, 89: 309-319. 10.1016/S0092-8674(00)80209-3.CrossRefPubMed Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et al: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997, 89: 309-319. 10.1016/S0092-8674(00)80209-3.CrossRefPubMed
51.
go back to reference Thomas GP, Baker SUK, Eisman JA, Gardiner EM: Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol. 2001, 170: 451-460. 10.1677/joe.0.1700451.CrossRefPubMed Thomas GP, Baker SUK, Eisman JA, Gardiner EM: Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol. 2001, 170: 451-460. 10.1677/joe.0.1700451.CrossRefPubMed
52.
go back to reference Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, et al: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12: 1260-1268.PubMedCentralCrossRefPubMed Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, et al: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12: 1260-1268.PubMedCentralCrossRefPubMed
53.
go back to reference Hofbauer LC, Heufelder AE: Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J Mol Med. 2001, 79: 243-253. 10.1007/s001090100226.CrossRefPubMed Hofbauer LC, Heufelder AE: Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J Mol Med. 2001, 79: 243-253. 10.1007/s001090100226.CrossRefPubMed
54.
go back to reference Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002, 3: 889-901. 10.1016/S1534-5807(02)00369-6.CrossRefPubMed Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002, 3: 889-901. 10.1016/S1534-5807(02)00369-6.CrossRefPubMed
55.
go back to reference Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J-i, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T, et al: Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest. 2004, 114: 475-484. 10.1172/JCI200419657.PubMedCentralCrossRefPubMed Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J-i, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T, et al: Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest. 2004, 114: 475-484. 10.1172/JCI200419657.PubMedCentralCrossRefPubMed
56.
go back to reference Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U: Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 1997, 11: 3482-3496.PubMedCentralCrossRefPubMed Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U: Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 1997, 11: 3482-3496.PubMedCentralCrossRefPubMed
57.
go back to reference Jimi E, Aoki K, Saito H, D'Acquisto F, May JJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, et al: Selective inhibition of NF-B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004, 10: 617-624. 10.1038/nm1054.CrossRefPubMed Jimi E, Aoki K, Saito H, D'Acquisto F, May JJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, et al: Selective inhibition of NF-B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004, 10: 617-624. 10.1038/nm1054.CrossRefPubMed
58.
go back to reference Dai S, Hirayama T, Abbas S, Abu-Amer Y: The IκB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem. 2004, 279: 37219-37222. 10.1074/jbc.C400258200.CrossRefPubMed Dai S, Hirayama T, Abbas S, Abu-Amer Y: The IκB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem. 2004, 279: 37219-37222. 10.1074/jbc.C400258200.CrossRefPubMed
59.
go back to reference Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y: Direct inhibition of NF-κB blocks bone erosion associated with inflammatory arthritis. J Immunol. 2003, 171: 5547-5553.CrossRefPubMed Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y: Direct inhibition of NF-κB blocks bone erosion associated with inflammatory arthritis. J Immunol. 2003, 171: 5547-5553.CrossRefPubMed
60.
go back to reference Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL: TAT fusion proteins containing tyrosine 42-deleted IκBα arrest osteoclastogenesis. J Biol Chem. 2001, 276: 30499-30503. 10.1074/jbc.M104725200.CrossRefPubMed Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL: TAT fusion proteins containing tyrosine 42-deleted IκBα arrest osteoclastogenesis. J Biol Chem. 2001, 276: 30499-30503. 10.1074/jbc.M104725200.CrossRefPubMed
61.
go back to reference Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu L-C, Cao Y, Schett G, Wagner EF, Karin M: IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med. 2005, 201: 1677-1687. 10.1084/jem.20042081.PubMedCentralCrossRefPubMed Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu L-C, Cao Y, Schett G, Wagner EF, Karin M: IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med. 2005, 201: 1677-1687. 10.1084/jem.20042081.PubMedCentralCrossRefPubMed
62.
go back to reference Abbas S, Abu-Amer Y: Dominant-negative IκB facilitates apoptosis of osteoclasts by tumor necrosis factor-α. J Biol Chem. 2003, 278: 20077-20082. 10.1074/jbc.M208619200.CrossRefPubMed Abbas S, Abu-Amer Y: Dominant-negative IκB facilitates apoptosis of osteoclasts by tumor necrosis factor-α. J Biol Chem. 2003, 278: 20077-20082. 10.1074/jbc.M208619200.CrossRefPubMed
63.
go back to reference Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun S-C, et al: Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science. 2001, 293: 1495-1499. 10.1126/science.1062677.CrossRefPubMed Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun S-C, et al: Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science. 2001, 293: 1495-1499. 10.1126/science.1062677.CrossRefPubMed
64.
go back to reference Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL: The IκB function of NF-κB2 p100 controls stimulated osteoclastogenesis. J Exp Med. 2003, 198: 771-781. 10.1084/jem.20030116.PubMedCentralCrossRefPubMed Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL: The IκB function of NF-κB2 p100 controls stimulated osteoclastogenesis. J Exp Med. 2003, 198: 771-781. 10.1084/jem.20030116.PubMedCentralCrossRefPubMed
65.
go back to reference Chaisson ML, Branstetter DG, Derry JM, Armstrong AP, Tometsko ME, Takeda K, Akira S, Dougall WC: Osteoclast differentiation is impaired in the absence of inhibitor of κB kinase α. J Biol Chem. 2004, 279: 54841-54848. 10.1074/jbc.M406392200.CrossRefPubMed Chaisson ML, Branstetter DG, Derry JM, Armstrong AP, Tometsko ME, Takeda K, Akira S, Dougall WC: Osteoclast differentiation is impaired in the absence of inhibitor of κB kinase α. J Biol Chem. 2004, 279: 54841-54848. 10.1074/jbc.M406392200.CrossRefPubMed
66.
go back to reference Dai X-M, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002, 99: 111-120. 10.1182/blood.V99.1.111.CrossRefPubMed Dai X-M, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002, 99: 111-120. 10.1182/blood.V99.1.111.CrossRefPubMed
67.
go back to reference Myint YY, Miyakawa K, Naito M, Shultz LD, Oike Y, Yamamura K, Takahashi K: Granulocyte/macrophage colony-stimulating factor and interleukin-3 correct osteopetrosis in mice with osteopetrosis mutation. Am J Pathol. 1999, 154: 553-566.PubMedCentralCrossRefPubMed Myint YY, Miyakawa K, Naito M, Shultz LD, Oike Y, Yamamura K, Takahashi K: Granulocyte/macrophage colony-stimulating factor and interleukin-3 correct osteopetrosis in mice with osteopetrosis mutation. Am J Pathol. 1999, 154: 553-566.PubMedCentralCrossRefPubMed
68.
go back to reference Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H: Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med. 1999, 190: 293-298. 10.1084/jem.190.2.293.PubMedCentralCrossRefPubMed Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H: Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med. 1999, 190: 293-298. 10.1084/jem.190.2.293.PubMedCentralCrossRefPubMed
69.
go back to reference Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R: IL-7 stimulates osteoclast formation by upregulating the T-cell production of soluble osteoclastogenic cytokines. Blood. 2000, 96: 1873-1878.PubMed Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R: IL-7 stimulates osteoclast formation by upregulating the T-cell production of soluble osteoclastogenic cytokines. Blood. 2000, 96: 1873-1878.PubMed
70.
go back to reference Weir EC, Lowik CW, Paliwal I, Insogna KL: Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. J Bone Miner Res. 1996, 11: 1474-1481.CrossRefPubMed Weir EC, Lowik CW, Paliwal I, Insogna KL: Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. J Bone Miner Res. 1996, 11: 1474-1481.CrossRefPubMed
71.
go back to reference Srivastava S, Weitzmann MN, Kimble RB, Rizzo M, Zahner M, Milbrandt J, Ross FP, Pacifici R: Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp-1. J Clin Invest. 1998, 102: 1850-1859.PubMedCentralCrossRefPubMed Srivastava S, Weitzmann MN, Kimble RB, Rizzo M, Zahner M, Milbrandt J, Ross FP, Pacifici R: Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp-1. J Clin Invest. 1998, 102: 1850-1859.PubMedCentralCrossRefPubMed
72.
go back to reference Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ: Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med. 1993, 178: 1733-1744. 10.1084/jem.178.5.1733.CrossRefPubMed Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ: Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med. 1993, 178: 1733-1744. 10.1084/jem.178.5.1733.CrossRefPubMed
73.
go back to reference Golden LH, Insogna KL: The expanding role of PI3-kinase in bone. Bone. 2004, 34: 3-12. 10.1016/j.bone.2003.09.005.CrossRefPubMed Golden LH, Insogna KL: The expanding role of PI3-kinase in bone. Bone. 2004, 34: 3-12. 10.1016/j.bone.2003.09.005.CrossRefPubMed
74.
go back to reference Vedham V, Phee H, Coggeshall KM: Vav activation and function as a Rac guanine nucleotide exchange factor in macrophage colony-stimulating factor-induced macrophage chemotaxis. Mol Cell Biol. 2005, 25: 4211-4220. 10.1128/MCB.25.10.4211-4220.2005.PubMedCentralCrossRefPubMed Vedham V, Phee H, Coggeshall KM: Vav activation and function as a Rac guanine nucleotide exchange factor in macrophage colony-stimulating factor-induced macrophage chemotaxis. Mol Cell Biol. 2005, 25: 4211-4220. 10.1128/MCB.25.10.4211-4220.2005.PubMedCentralCrossRefPubMed
75.
go back to reference Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, et al: SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med. 2002, 8: 943-949. 10.1038/nm752.CrossRefPubMed Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, et al: SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med. 2002, 8: 943-949. 10.1038/nm752.CrossRefPubMed
76.
go back to reference Teti A, Taranta A, Migliaccio S, Degiorgi A, Santandrea E, Villanova I, Faraggiana T, Chellaiah M, Hruska KA: Colony stimulating factor-1-induced osteoclast spreading depends on substrate and requires the vitronectin receptor and the c-src proto-oncogene. J Bone Miner Res. 1998, 13: 50-58. 10.1359/jbmr.1998.13.1.50.CrossRefPubMed Teti A, Taranta A, Migliaccio S, Degiorgi A, Santandrea E, Villanova I, Faraggiana T, Chellaiah M, Hruska KA: Colony stimulating factor-1-induced osteoclast spreading depends on substrate and requires the vitronectin receptor and the c-src proto-oncogene. J Bone Miner Res. 1998, 13: 50-58. 10.1359/jbmr.1998.13.1.50.CrossRefPubMed
77.
go back to reference Abu-Amer Y, Erdmann J, Kollias G, Alexopoulou L, Ross FP, Teitelbaum SL: Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem. 2000, 275: 27307-27310.PubMed Abu-Amer Y, Erdmann J, Kollias G, Alexopoulou L, Ross FP, Teitelbaum SL: Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem. 2000, 275: 27307-27310.PubMed
78.
go back to reference Gao Y, Qian W-P, Dark K, Toraldo G, Lin ASP, Guldberg RE, Flavell RA, Weitzmann MN, Pacifici R: Estrogen prevents bone loss through transforming growth factor β signaling in T cells. Proc Natl Acad Sci USA. 2004, 101: 16618-16623. 10.1073/pnas.0404888101.PubMedCentralCrossRefPubMed Gao Y, Qian W-P, Dark K, Toraldo G, Lin ASP, Guldberg RE, Flavell RA, Weitzmann MN, Pacifici R: Estrogen prevents bone loss through transforming growth factor β signaling in T cells. Proc Natl Acad Sci USA. 2004, 101: 16618-16623. 10.1073/pnas.0404888101.PubMedCentralCrossRefPubMed
80.
go back to reference Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL: IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005, 115: 282-290. 10.1172/JCI200523394.PubMedCentralCrossRefPubMed Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL: IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005, 115: 282-290. 10.1172/JCI200523394.PubMedCentralCrossRefPubMed
81.
go back to reference Zwerina J, Hayer S, Tohidast-Akrad M, Bergmeister H, Redlich K, Feige U, Dunstan C, Kollias G, Steiner G, Smolen J, et al: Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 2004, 50: 277-290. 10.1002/art.11487.CrossRefPubMed Zwerina J, Hayer S, Tohidast-Akrad M, Bergmeister H, Redlich K, Feige U, Dunstan C, Kollias G, Steiner G, Smolen J, et al: Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 2004, 50: 277-290. 10.1002/art.11487.CrossRefPubMed
Metadata
Title
Osteoclasts; culprits in inflammatory osteolysis
Author
Steven L Teitelbaum
Publication date
01-02-2005
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2006
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar1857

Other articles of this Issue 1/2006

Arthritis Research & Therapy 1/2006 Go to the issue