Skip to main content
Top
Published in: Osteoporosis International 3/2013

01-03-2013 | Original Article

Effects of strontium on the quality of bone apatite crystals: a paired biopsy study in postmenopausal osteoporotic women

Authors: A. Doublier, D. Farlay, X. Jaurand, R. Vera, G. Boivin

Published in: Osteoporosis International | Issue 3/2013

Login to get access

Abstract

Summary

In paired biopsies of osteoporotic women treated with either strontium ranelate or a placebo for 36 months, characteristics of bone apatite crystals were not influenced by the presence of strontium. The mean rate of substitutions of calcium by strontium ions was 4.5 %.

Introduction

The potential effect of strontium (Sr) on bone apatite crystals was investigated in paired biopsies of osteoporotic women treated with either strontium ranelate (SrRan) or a placebo for 36 months.

Methods

In ten paired biopsies, crystallinity, apparent length and width/thickness of crystals, interplanar distances, and lattice parameters of unit cells were assessed by X-ray diffraction and selected area electron diffraction.

Results

All these parameters, reflecting crystal and unit cell characteristics, were not influenced by the presence of Sr and were similar in SrRan and placebo groups after 36 months of treatment. The mean rate of substitutions of calcium by Sr ions was 4.5 %.

Conclusion

Overall, the quality of bone apatite crystals was maintained after 36 months of treatment with SrRan.
Literature
1.
go back to reference Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMedCrossRef Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMedCrossRef
2.
go back to reference Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673PubMedCrossRef Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673PubMedCrossRef
3.
go back to reference Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822PubMedCrossRef Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822PubMedCrossRef
4.
go back to reference Reginster JY, Bruyere O, Sawicki A, Roces-Varela A, Fardellone P, Roberts A, Devogelaer JP (2009) Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone 45:1059–1064PubMedCrossRef Reginster JY, Bruyere O, Sawicki A, Roces-Varela A, Fardellone P, Roberts A, Devogelaer JP (2009) Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone 45:1059–1064PubMedCrossRef
5.
go back to reference Rolland Y, Abellan Van Kan G, Gillette-Guyonnet S, Roux C, Boonen S, Vellas B (2011) Strontium ranelate and risk of vertebral fractures in frail osteoporotic women. Bone 48:332–338PubMedCrossRef Rolland Y, Abellan Van Kan G, Gillette-Guyonnet S, Roux C, Boonen S, Vellas B (2011) Strontium ranelate and risk of vertebral fractures in frail osteoporotic women. Bone 48:332–338PubMedCrossRef
6.
go back to reference Seeman E, Devogelaer JP, Lorenc R, Spector T, Brixen K, Balogh A, Stucki G, Reginster JY (2008) Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J Bone Miner Res 23:433–438PubMedCrossRef Seeman E, Devogelaer JP, Lorenc R, Spector T, Brixen K, Balogh A, Stucki G, Reginster JY (2008) Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J Bone Miner Res 23:433–438PubMedCrossRef
7.
go back to reference Seeman E, Boonen S, Borgstrom F, Vellas B, Aquino JP, Semler J, Benhamou CL, Kaufman JM, Reginster JY (2010) Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone 46:1038–1042PubMedCrossRef Seeman E, Boonen S, Borgstrom F, Vellas B, Aquino JP, Semler J, Benhamou CL, Kaufman JM, Reginster JY (2010) Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone 46:1038–1042PubMedCrossRef
8.
go back to reference Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104PubMedCrossRef Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104PubMedCrossRef
9.
go back to reference Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789PubMedCrossRef Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789PubMedCrossRef
10.
go back to reference Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef
11.
go back to reference Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261PubMedCrossRef Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261PubMedCrossRef
12.
13.
go back to reference Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677PubMedCrossRef Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677PubMedCrossRef
14.
go back to reference Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900PubMedCrossRef Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900PubMedCrossRef
15.
go back to reference Doublier A, Farlay D, Khebbab MT, Jaurand X, Meunier PJ, Boivin G (2011) Distribution of strontium and mineralization in iliac bone biopsies from osteoporotic women treated long-term with strontium ranelate. Eur J Endocrinol 165:469–476PubMedCrossRef Doublier A, Farlay D, Khebbab MT, Jaurand X, Meunier PJ, Boivin G (2011) Distribution of strontium and mineralization in iliac bone biopsies from osteoporotic women treated long-term with strontium ranelate. Eur J Endocrinol 165:469–476PubMedCrossRef
16.
go back to reference Heijligers HJ, Driessens FC, Verbeeck RM (1979) Lattice parameters and cation distribution of solid solutions of calcium and strontium hydroxyapatite. Calcif Tissue Int 29:127–131PubMedCrossRef Heijligers HJ, Driessens FC, Verbeeck RM (1979) Lattice parameters and cation distribution of solid solutions of calcium and strontium hydroxyapatite. Calcif Tissue Int 29:127–131PubMedCrossRef
17.
go back to reference Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54PubMedCrossRef Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54PubMedCrossRef
18.
go back to reference Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorrine W, De Broe ME, D’Haese PC (2004) Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int 75:405–415PubMedCrossRef Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorrine W, De Broe ME, D’Haese PC (2004) Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int 75:405–415PubMedCrossRef
19.
go back to reference Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016CrossRef Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016CrossRef
20.
go back to reference O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464PubMedCrossRef O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464PubMedCrossRef
21.
go back to reference Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KM, Luk KD, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460PubMedCrossRef Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KM, Luk KD, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460PubMedCrossRef
22.
go back to reference Boanini E, Torricelli P, Fini M, Bigi A (2011) Osteopenic bone cell response to strontium-substituted hydroxyapatite. J Mater Sci Mater Med 22:2079–2088PubMedCrossRef Boanini E, Torricelli P, Fini M, Bigi A (2011) Osteopenic bone cell response to strontium-substituted hydroxyapatite. J Mater Sci Mater Med 22:2079–2088PubMedCrossRef
23.
go back to reference Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311PubMedCrossRef Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311PubMedCrossRef
24.
go back to reference Cazalbou S, Combes C, Rey C (2002) S12911 treatment maintains bone mineral characteristics. J Bone Miner Res 17:S376 Cazalbou S, Combes C, Rey C (2002) S12911 treatment maintains bone mineral characteristics. J Bone Miner Res 17:S376
25.
go back to reference LeGeros R, Lin S, LeGeros J (2003) Strontium ranelate treatment preserves bone crystal characteristics and dissolution properties of bone apatite. J Bone Miner Res 18:S276 LeGeros R, Lin S, LeGeros J (2003) Strontium ranelate treatment preserves bone crystal characteristics and dissolution properties of bone apatite. J Bone Miner Res 18:S276
26.
go back to reference Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578PubMedCrossRef Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578PubMedCrossRef
27.
go back to reference Bunger MH, Oxlund H, Hansen TK, Sorensen S, Bibby BM, Thomsen JS, Langdahl BL, Besenbacher F, Pedersen JS, Birkedal H (2010) Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering. Calcif Tissue Int 86:294–306PubMedCrossRef Bunger MH, Oxlund H, Hansen TK, Sorensen S, Bibby BM, Thomsen JS, Langdahl BL, Besenbacher F, Pedersen JS, Birkedal H (2010) Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering. Calcif Tissue Int 86:294–306PubMedCrossRef
28.
go back to reference Li Z, Lu WW, Deng L, Chiu PK, Fang D, Lam RW, Leong JC, Luk KD (2010) The morphology and lattice structure of bone crystal after strontium treatment in goats. J Bone Miner Metab 28:25–34PubMedCrossRef Li Z, Lu WW, Deng L, Chiu PK, Fang D, Lam RW, Leong JC, Luk KD (2010) The morphology and lattice structure of bone crystal after strontium treatment in goats. J Bone Miner Metab 28:25–34PubMedCrossRef
29.
go back to reference Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975PubMed Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975PubMed
30.
go back to reference Labar JL (2005) Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy 103:237–249PubMedCrossRef Labar JL (2005) Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy 103:237–249PubMedCrossRef
31.
go back to reference Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCrossRef Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCrossRef
32.
go back to reference Robinson RA (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg Am 34-A:389–435, passimPubMed Robinson RA (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg Am 34-A:389–435, passimPubMed
33.
go back to reference Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885PubMed Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885PubMed
34.
go back to reference Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809PubMedCrossRef Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809PubMedCrossRef
35.
go back to reference Cazalbou S, Combes C, Rey C (2001) Biomimetic approach for strontium-containing Ca-P bioceramics with enhanced biological activity. Key Eng Mater 192–195:147–150CrossRef Cazalbou S, Combes C, Rey C (2001) Biomimetic approach for strontium-containing Ca-P bioceramics with enhanced biological activity. Key Eng Mater 192–195:147–150CrossRef
36.
go back to reference Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y (2002) Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone 31:479–487PubMedCrossRef Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y (2002) Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone 31:479–487PubMedCrossRef
37.
go back to reference Yalin S, Comelekoglu U, Bagis S, Yilmaz N (2012) Effects of strontium ranelate on cortical bone collagen integrity. Saudi Med J 33:515–519PubMed Yalin S, Comelekoglu U, Bagis S, Yilmaz N (2012) Effects of strontium ranelate on cortical bone collagen integrity. Saudi Med J 33:515–519PubMed
Metadata
Title
Effects of strontium on the quality of bone apatite crystals: a paired biopsy study in postmenopausal osteoporotic women
Authors
A. Doublier
D. Farlay
X. Jaurand
R. Vera
G. Boivin
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 3/2013
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-012-2181-9

Other articles of this Issue 3/2013

Osteoporosis International 3/2013 Go to the issue