Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 1/2010

01-01-2010 | Original Article

The morphology and lattice structure of bone crystal after strontium treatment in goats

Authors: Zhaoyang Li, William W. Lu, Lianfu Deng, Peter K. Y. Chiu, David Fang, Raymond W. M. Lam, John C. Y. Leong, Keith D. K. Luk

Published in: Journal of Bone and Mineral Metabolism | Issue 1/2010

Login to get access

Abstract

Strontium (Sr) compounds have become increasingly popular in osteoporosis treatment. As a bone seeking element, 98% of Sr deposits in bone and teeth after oral ingestion. However, the quality of new bone after Sr deposition is yet to be extensively investigated. In this study, eight osteopenic goats were divided into two groups: Ca + 40Sr (five goats) and controls (three goats). Controls were fed with low calcium feeds. Ca phosphate was supplied at 100 mg/(kg day), and Sr phosphate at 40 mg/(kg day) in the Ca + 40Sr group. The newly formed bone at the outer cortical area of the femur with Sr deposition was identified from tetracycline labels, and the morphology and lattice structure of the crystals in these regions were investigated. Results showed that Sr concentrations of bone tissue significantly increased 144.37% for Sr administration without significant change in Ca concentration, and the ingested Sr mainly deposited in new bone. The crystal isolated from new bone exhibited the typical character of biological apatite as determined by Fourier transform infrared spectroscopy and selected-area electron diffraction. Transmission electron microscopy examination showed that a crystal with width of 8–10 nm grew along with the (002) lattice and aligned with the same direction in both groups. The elemental analysis of crystals showed that the ingested Sr deposited mainly in the bone matrix or was absorbed on the bone crystal surface, while only a limited amount of Sr replaced Ca in apatite crystals. Our findings showed that Sr administration at current dosages for prevention and treatment of osteoporosis might not change the bone crystal morphology and structure.
Literature
1.
go back to reference Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468CrossRefPubMed Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468CrossRefPubMed
2.
go back to reference Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, Luisetto G, Padrino JM, Doyle D, Prince R, Fardellone P, Sorensen OH, Meunier PJ (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–542CrossRefPubMed Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, Luisetto G, Padrino JM, Doyle D, Prince R, Fardellone P, Sorensen OH, Meunier PJ (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–542CrossRefPubMed
3.
go back to reference Seeman E, Vellas B, Benhamou C, Aquino JP, Semler J, Kaufman JM, Hoszowski K, Varela AR, Fiore C, Brixen K, Reginster JY, Boonen S (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120CrossRefPubMed Seeman E, Vellas B, Benhamou C, Aquino JP, Semler J, Kaufman JM, Hoszowski K, Varela AR, Fiore C, Brixen K, Reginster JY, Boonen S (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120CrossRefPubMed
4.
go back to reference Alexandersen P, Karsdal MA, Qvist P, Reginster JY, Christiansen C (2007) Strontium ranelate reduces the urinary level of cartilage degradation biomarker CTX-II in postmenopausal women. Bone 40:218–222CrossRefPubMed Alexandersen P, Karsdal MA, Qvist P, Reginster JY, Christiansen C (2007) Strontium ranelate reduces the urinary level of cartilage degradation biomarker CTX-II in postmenopausal women. Bone 40:218–222CrossRefPubMed
5.
go back to reference Henrotin Y, Labasse A, Zheng SX, Galais P, Tsouderos Y, Crielaard JM, Reginster JY (2001) Strontium ranelate increases cartilage matrix formation. J Bone Miner Res 16:299–308CrossRefPubMed Henrotin Y, Labasse A, Zheng SX, Galais P, Tsouderos Y, Crielaard JM, Reginster JY (2001) Strontium ranelate increases cartilage matrix formation. J Bone Miner Res 16:299–308CrossRefPubMed
6.
go back to reference Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C (2007) Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins. J Bone Miner Res 22:1002–1010CrossRefPubMed Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C (2007) Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins. J Bone Miner Res 22:1002–1010CrossRefPubMed
7.
go back to reference Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A, Dupin-Roger I, Zaidi M, Sun L (2007) Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun 355:307–311CrossRefPubMed Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A, Dupin-Roger I, Zaidi M, Sun L (2007) Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun 355:307–311CrossRefPubMed
8.
go back to reference Kendler DL (2006) Strontium ranelate–data on vertebral and nonvertebral fracture efficacy and safety: mechanism of action. Curr Osteoporos Rep 4:34–39CrossRefPubMed Kendler DL (2006) Strontium ranelate–data on vertebral and nonvertebral fracture efficacy and safety: mechanism of action. Curr Osteoporos Rep 4:34–39CrossRefPubMed
9.
go back to reference Takahashi N, Sasaki T, Tsouderos Y, Suda T (2003) S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18:1082–1087CrossRefPubMed Takahashi N, Sasaki T, Tsouderos Y, Suda T (2003) S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18:1082–1087CrossRefPubMed
10.
go back to reference Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020CrossRefPubMed Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020CrossRefPubMed
11.
go back to reference Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615PubMed Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615PubMed
12.
go back to reference Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311PubMedCrossRef Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311PubMedCrossRef
13.
go back to reference Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578CrossRefPubMed Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578CrossRefPubMed
15.
go back to reference Jupsin I, Collette J, Henrotin Y, Bruyere O, Sarlet N, Reginster JY (2005) Strontium ranelate (Fujisawa/Servier). Curr Opin Investig Drugs 6:435–444PubMed Jupsin I, Collette J, Henrotin Y, Bruyere O, Sarlet N, Reginster JY (2005) Strontium ranelate (Fujisawa/Servier). Curr Opin Investig Drugs 6:435–444PubMed
16.
go back to reference Heaney RP, Nordin BE (2002) Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 21:239–244PubMed Heaney RP, Nordin BE (2002) Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 21:239–244PubMed
17.
go back to reference Shiraishi A, Ito M, Hayakawa N, Kubota N, Kubodera N, Ogata E (2006) Calcium supplementation does not reproduce the pharmacological efficacy of alfacalcidol for the treatment of osteoporosis in rats. Calcif Tissue Int 78:152–161CrossRefPubMed Shiraishi A, Ito M, Hayakawa N, Kubota N, Kubodera N, Ogata E (2006) Calcium supplementation does not reproduce the pharmacological efficacy of alfacalcidol for the treatment of osteoporosis in rats. Calcif Tissue Int 78:152–161CrossRefPubMed
18.
go back to reference Li Z, Lu WW, Chiu PK, Lam RW, Xu B, Cheung KM, Leong JC, Luk KD (2009) Strontium-calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. J Orthop Res 27:758–762CrossRefPubMed Li Z, Lu WW, Chiu PK, Lam RW, Xu B, Cheung KM, Leong JC, Luk KD (2009) Strontium-calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. J Orthop Res 27:758–762CrossRefPubMed
19.
go back to reference Boskey A. (2003) Bone mineral crystal size. Osteoporos Int 14:16–21 Boskey A. (2003) Bone mineral crystal size. Osteoporos Int 14:16–21
20.
go back to reference Miller AG, Burnell JM (1977) The effects of crystal size distributions on the crystallinity analysis of bone mineral. Calcif Tissue Res 24:105–111CrossRefPubMed Miller AG, Burnell JM (1977) The effects of crystal size distributions on the crystallinity analysis of bone mineral. Calcif Tissue Res 24:105–111CrossRefPubMed
21.
go back to reference Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KM, Luk KD, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460CrossRefPubMed Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KM, Luk KD, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460CrossRefPubMed
22.
go back to reference Siu WS, Cheung NM, Lui PPY, Chow DHK, James A, Qin L, Leung KS (2001) Establishment of an osteoporotic goat animal model. Bone 28:S532 Siu WS, Cheung NM, Lui PPY, Chow DHK, James A, Qin L, Leung KS (2001) Establishment of an osteoporotic goat animal model. Bone 28:S532
23.
go back to reference Leung KS, Siu WS, Cheung NM, Lui PY, Chow DH, James A, Qin L (2001) Goats as an osteopenic animal model. J Bone Miner Res 16:2348–2355CrossRefPubMed Leung KS, Siu WS, Cheung NM, Lui PY, Chow DH, James A, Qin L (2001) Goats as an osteopenic animal model. J Bone Miner Res 16:2348–2355CrossRefPubMed
24.
go back to reference Mauras Y, Ang KS, Simon P, Tessier B, Cartier F, Allain P (1986) Increase in blood plasma levels of boron and strontium in hemodialyzed patients. Clin Chim Acta 156:315–320CrossRefPubMed Mauras Y, Ang KS, Simon P, Tessier B, Cartier F, Allain P (1986) Increase in blood plasma levels of boron and strontium in hemodialyzed patients. Clin Chim Acta 156:315–320CrossRefPubMed
25.
go back to reference Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMed Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMed
26.
go back to reference Turner AS (2001) Animal models of osteoporosis—necessity and limitations. Eur Cell Mater 1:66–81PubMed Turner AS (2001) Animal models of osteoporosis—necessity and limitations. Eur Cell Mater 1:66–81PubMed
27.
go back to reference Shahnazari M, Sharkey NA, Fosmire GJ, Leach RM (2006) Effects of strontium on bone strength, density, volume, and microarchitecture in laying hens. J Bone Miner Res 21:1696–1703CrossRefPubMed Shahnazari M, Sharkey NA, Fosmire GJ, Leach RM (2006) Effects of strontium on bone strength, density, volume, and microarchitecture in laying hens. J Bone Miner Res 21:1696–1703CrossRefPubMed
28.
go back to reference Oxlund H, Ejersted C, Andreassen TT, Torring O, Nilsson MH (1993) Parathyroid hormone (1–34) and (1–84) stimulate cortical bone formation both from periosteum and endosteum. Calcif Tissue Int 53:394–399PubMed Oxlund H, Ejersted C, Andreassen TT, Torring O, Nilsson MH (1993) Parathyroid hormone (1–34) and (1–84) stimulate cortical bone formation both from periosteum and endosteum. Calcif Tissue Int 53:394–399PubMed
29.
go back to reference Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323CrossRefPubMed Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323CrossRefPubMed
Metadata
Title
The morphology and lattice structure of bone crystal after strontium treatment in goats
Authors
Zhaoyang Li
William W. Lu
Lianfu Deng
Peter K. Y. Chiu
David Fang
Raymond W. M. Lam
John C. Y. Leong
Keith D. K. Luk
Publication date
01-01-2010
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 1/2010
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-009-0109-z

Other articles of this Issue 1/2010

Journal of Bone and Mineral Metabolism 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.