Skip to main content
Top
Published in: International Urogynecology Journal 3/2018

01-03-2018 | Original Article

Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results

Authors: Estelle Jean Dit Gautier, Olivier Mayeur, Julien Lepage, Mathias Brieu, Michel Cosson, Chrystele Rubod

Published in: International Urogynecology Journal | Issue 3/2018

Login to get access

Abstract

Introduction and hypothesis

We studied the geometry of and changes in structures that play an important role in stabilizing the pelvic system during pregnancy using a numerical system at different gestational ages and postpartum.

Methods

We developed a parturient numerical model to assess pelvic structures at different gestational stages (16, 32, and 38 weeks) and postpartum (2 months and 1 year) using magnetic resonance imaging (MRI). Organs, muscles, and ligaments were segmented to generate a 3D model of the pelvis. We studied changes in the length of uterosacral ligaments (USL) and thickness of the puborectal portion of the levator ani muscle (LAM) during and after pregnancy. We used this model to perform finite element (FE) simulation and analyze deformations of these structures under stress from the increase in uterine weight.

Results

Analysis reveals an increase in the length of US ligaments at 16, 32, and 38 weeks. Two months after delivery, it decreases without returning to the length at 16 weeks of pregnancy. Similar changes were observed for the puborectal portion of the LAM. Variations observed in these structures are not equivalent to other anatomical structures of pelvic suspension. FE simulation with increased uterus weight does not lead to those findings.

Conclusion

This analysis brings new elements and a new focus for discussion relating to changes in pelvic balance of parturient women that are not simply linked to the increase in uterine volume.
Literature
1.
go back to reference Rortveit G, Brown JS, Thom DH, Van Den Eeden SK, Creasman JM, Subak LL. Symptomatic pelvic organ prolapse: prevalence and risk factors in a population-based, racially diverse cohort. Obstet Gynecol. 2007;109(6):1396–403.CrossRefPubMed Rortveit G, Brown JS, Thom DH, Van Den Eeden SK, Creasman JM, Subak LL. Symptomatic pelvic organ prolapse: prevalence and risk factors in a population-based, racially diverse cohort. Obstet Gynecol. 2007;109(6):1396–403.CrossRefPubMed
2.
go back to reference O’Boyle AL, O’Boyle JD, Ricks RE, Patience TH, Calhoun B, Davis G. The natural history of pelvic organ support in pregnancy. Int Urogynecol J Pelvic Floor Dysfunct. 2003;14(1):46–9. discussion 49 CrossRefPubMed O’Boyle AL, O’Boyle JD, Ricks RE, Patience TH, Calhoun B, Davis G. The natural history of pelvic organ support in pregnancy. Int Urogynecol J Pelvic Floor Dysfunct. 2003;14(1):46–9. discussion 49 CrossRefPubMed
3.
go back to reference Rahn DD, Ruff MD, Brown SA, Tibbals HF, Word RA. Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol. 2008 May;198(5):590.e1–6.CrossRef Rahn DD, Ruff MD, Brown SA, Tibbals HF, Word RA. Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol. 2008 May;198(5):590.e1–6.CrossRef
4.
go back to reference Mayeur O, Witz J-F, Lecomte P, Brieu M, Cosson M, Miller K. Influence of Geometry and Mechanical Properties on the Accuracy of Patient-Specific Simulation of Women Pelvic Floor. Ann Biomed Eng. 2015. Mayeur O, Witz J-F, Lecomte P, Brieu M, Cosson M, Miller K. Influence of Geometry and Mechanical Properties on the Accuracy of Patient-Specific Simulation of Women Pelvic Floor. Ann Biomed Eng. 2015.
5.
go back to reference Jeanditgautier E, Mayeur O, Brieu M, Lamblin G, Rubod C, Cosson M. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system. Int Urogynecol J. 2016. Jeanditgautier E, Mayeur O, Brieu M, Lamblin G, Rubod C, Cosson M. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system. Int Urogynecol J. 2016.
6.
go back to reference Parente MPL, Natal Jorge RM, Mascarenhas T, Fernandes AA, Martins J. a. C. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J Biomech. 2009;42(9):1301–6.CrossRefPubMed Parente MPL, Natal Jorge RM, Mascarenhas T, Fernandes AA, Martins J. a. C. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J Biomech. 2009;42(9):1301–6.CrossRefPubMed
8.
go back to reference Wei JT, De Lancey JOL. Functional anatomy of the pelvic floor and lower urinary tract. Clin Obstet Gynecol. 2004;47(1):3–17.CrossRefPubMed Wei JT, De Lancey JOL. Functional anatomy of the pelvic floor and lower urinary tract. Clin Obstet Gynecol. 2004;47(1):3–17.CrossRefPubMed
9.
go back to reference C. Courpotin, C Polonovski, M Voyer, J-C Chaumeil. Importance de la nutrition prénatale. In: Nutrition et renutrition en pratique pédiatrique. 1992. C. Courpotin, C Polonovski, M Voyer, J-C Chaumeil. Importance de la nutrition prénatale. In: Nutrition et renutrition en pratique pédiatrique. 1992.
11.
go back to reference Buller JL, Thompson JR, Cundiff GW, Krueger Sullivan L, Schön Ybarra MA, Bent AE. Uterosacral ligament: description of anatomic relationships to optimize surgical safety. Obstet Gynecol. 2001;97(6):873–9.PubMed Buller JL, Thompson JR, Cundiff GW, Krueger Sullivan L, Schön Ybarra MA, Bent AE. Uterosacral ligament: description of anatomic relationships to optimize surgical safety. Obstet Gynecol. 2001;97(6):873–9.PubMed
12.
go back to reference Lepage J, Cosson M, Mayeur O, Brieu M, Rubod C. The role of childbirth research simulators in clinical practice. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2015. Lepage J, Cosson M, Mayeur O, Brieu M, Rubod C. The role of childbirth research simulators in clinical practice. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2015.
13.
go back to reference Yan X, Kruger JA, Li X, Nielsen PMF, Nash MP. Modeling the second stage of labor. Wiley Interdiscip Rev Syst Biol Med. 2016;8(6):506–16.CrossRefPubMed Yan X, Kruger JA, Li X, Nielsen PMF, Nash MP. Modeling the second stage of labor. Wiley Interdiscip Rev Syst Biol Med. 2016;8(6):506–16.CrossRefPubMed
14.
go back to reference Lepage J, Jayyosi C, Lecomte-Grosbras P, Brieu M, Duriez C, Cosson M, et al. Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results. Int Urogynecology J. 2014. Lepage J, Jayyosi C, Lecomte-Grosbras P, Brieu M, Duriez C, Cosson M, et al. Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results. Int Urogynecology J. 2014.
15.
go back to reference Oliveira DA, Parente MPL, Calvo B, Mascarenhas T, Natal Jorge RM. Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth. J Biomech. 2016;49(4):594–601.CrossRefPubMed Oliveira DA, Parente MPL, Calvo B, Mascarenhas T, Natal Jorge RM. Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth. J Biomech. 2016;49(4):594–601.CrossRefPubMed
16.
go back to reference Umek WH, Morgan DM, Ashton-Miller JA, DeLancey JOL. Quantitative analysis of uterosacral ligament origin and insertion points by magnetic resonance imaging. Obstet Gynecol. 2004;103(3):447–51.CrossRefPubMedPubMedCentral Umek WH, Morgan DM, Ashton-Miller JA, DeLancey JOL. Quantitative analysis of uterosacral ligament origin and insertion points by magnetic resonance imaging. Obstet Gynecol. 2004;103(3):447–51.CrossRefPubMedPubMedCentral
17.
go back to reference Cosson M, Rubod C, Vallet A, Witz JF, Dubois P, Brieu M. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model. Int Urogynecology J. 2013;24(1):105–12.CrossRef Cosson M, Rubod C, Vallet A, Witz JF, Dubois P, Brieu M. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model. Int Urogynecology J. 2013;24(1):105–12.CrossRef
18.
go back to reference Li X, Kruger JA, Nash MP, Nielsen PMF. Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol. 2011;10(4):485–94.CrossRefPubMed Li X, Kruger JA, Nash MP, Nielsen PMF. Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol. 2011;10(4):485–94.CrossRefPubMed
19.
go back to reference Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ, et al. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol. 2008 Aug;199(2):198.e1–5.CrossRef Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ, et al. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol. 2008 Aug;199(2):198.e1–5.CrossRef
20.
go back to reference Ulrich D, Edwards SL, Su K, White JF, Ramshaw JAM, Jenkin G, et al. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PLoS One. 2014;9(4):e93172.CrossRefPubMedPubMedCentral Ulrich D, Edwards SL, Su K, White JF, Ramshaw JAM, Jenkin G, et al. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PLoS One. 2014;9(4):e93172.CrossRefPubMedPubMedCentral
21.
go back to reference Chen Y, Li F-Y, Lin X, Chen J, Chen C, Guess M. The recovery of pelvic organ support during the first year postpartum. BJOG Int J Obstet Gynaecol. 2013;120(11):1430–7.CrossRef Chen Y, Li F-Y, Lin X, Chen J, Chen C, Guess M. The recovery of pelvic organ support during the first year postpartum. BJOG Int J Obstet Gynaecol. 2013;120(11):1430–7.CrossRef
22.
go back to reference Volløyhaug I, Mørkved S, Salvesen Ø, Salvesen K. Pelvic organ prolapse and incontinence 15-23 years after first delivery: a cross-sectional study. BJOG Int J Obstet Gynaecol. 2015;122(7):964–71.CrossRef Volløyhaug I, Mørkved S, Salvesen Ø, Salvesen K. Pelvic organ prolapse and incontinence 15-23 years after first delivery: a cross-sectional study. BJOG Int J Obstet Gynaecol. 2015;122(7):964–71.CrossRef
23.
go back to reference Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P. A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol. 1994;170(1 Pt 1):32–3.CrossRefPubMed Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P. A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol. 1994;170(1 Pt 1):32–3.CrossRefPubMed
24.
go back to reference Elster AD. Does MR imaging have any known effects on the developing fetus? AJR Am J Roentgenol. 1994;162(6):1493.CrossRefPubMed Elster AD. Does MR imaging have any known effects on the developing fetus? AJR Am J Roentgenol. 1994;162(6):1493.CrossRefPubMed
25.
go back to reference Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging. Br J Radiol. 1983 Dec;56(672):974–7. Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging. Br J Radiol. 1983 Dec;56(672):974–7.
Metadata
Title
Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results
Authors
Estelle Jean Dit Gautier
Olivier Mayeur
Julien Lepage
Mathias Brieu
Michel Cosson
Chrystele Rubod
Publication date
01-03-2018
Publisher
Springer London
Published in
International Urogynecology Journal / Issue 3/2018
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-017-3520-3

Other articles of this Issue 3/2018

International Urogynecology Journal 3/2018 Go to the issue