Skip to main content
Top
Published in: International Urogynecology Journal 1/2013

01-01-2013 | Original Article

Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model

Authors: Michel Cosson, C. Rubod, A. Vallet, J. F. Witz, P. Dubois, M. Brieu

Published in: International Urogynecology Journal | Issue 1/2013

Login to get access

Abstract

Introduction and hypothesis

Three-dimensional modeling of feminine pelvic mobility is difficult because the sustaining system is not well understood and ligaments are especially difficult to identify on imaging.

Methods

We built a 3-D numerical model of the pelvic cavity, based on magnetic resonance (MR) images and knowledge about anatomy and validated it systematically.

Results

The quantitative results of this model allow for the non-destructive localization of the structures involved in pelvic statics. With a better configuration of the functional pelvis and topological criteria, we can obtain a coherent anatomical and functional model.

Conclusions

This model is the first step in developing a tool to localize and characterize pelvic imbalance in patients.
Literature
1.
go back to reference Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 19:811–816PubMedCrossRef Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 19:811–816PubMedCrossRef
2.
go back to reference Gabriel B, Rubod C, Brieu M, Dedet B, de Landsheere L, Delmas V, Cosson M (2011) Vagina, abdominal skin, and aponeurosis: do they have similar biomechanical properties. Int Urogynecol J 22:23–27PubMedCrossRef Gabriel B, Rubod C, Brieu M, Dedet B, de Landsheere L, Delmas V, Cosson M (2011) Vagina, abdominal skin, and aponeurosis: do they have similar biomechanical properties. Int Urogynecol J 22:23–27PubMedCrossRef
3.
go back to reference Rivaux G, Rubod C, Dedet B, Brieu M, Gabriel B, De Landscheere L, Devos P, Delmas V, Cosson M (2010) Caractérisation biomécanique des ligaments utérins. Implication en statique pelvienne. Pelvi-périnéologie: 1–8 Rivaux G, Rubod C, Dedet B, Brieu M, Gabriel B, De Landscheere L, Devos P, Delmas V, Cosson M (2010) Caractérisation biomécanique des ligaments utérins. Implication en statique pelvienne. Pelvi-périnéologie: 1–8
4.
go back to reference Jean-Charles C, Rubod C, Brieu C, Boukerrou M, Fasel J, Cosson M (2010) Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int Urogynecol J 21:1535–1538PubMedCrossRef Jean-Charles C, Rubod C, Brieu C, Boukerrou M, Fasel J, Cosson M (2010) Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int Urogynecol J 21:1535–1538PubMedCrossRef
5.
go back to reference Kamina P (2008) Anatomie clinique du petit bassin et périnée, vol 4. Maloine, Paris Kamina P (2008) Anatomie clinique du petit bassin et périnée, vol 4. Maloine, Paris
6.
go back to reference Umek WH, Morgan DM, Ashton-Miller JA, DeLancey JO (2004) Quantitative analysis of uterosacral ligament origin and insertion points by magnetic resonance imaging. Obstet Gynecol 103:447–451PubMedCrossRef Umek WH, Morgan DM, Ashton-Miller JA, DeLancey JO (2004) Quantitative analysis of uterosacral ligament origin and insertion points by magnetic resonance imaging. Obstet Gynecol 103:447–451PubMedCrossRef
7.
go back to reference Venugopala Rao G, Rubod C, Brieu M, Bhatnagar N, Cosson M (2010) Experiments and finite element modelling for the study of prolapse in the pelvic floor system. Comput Methods Biomech Biomed Engin 13:349–357PubMedCrossRef Venugopala Rao G, Rubod C, Brieu M, Bhatnagar N, Cosson M (2010) Experiments and finite element modelling for the study of prolapse in the pelvic floor system. Comput Methods Biomech Biomed Engin 13:349–357PubMedCrossRef
8.
go back to reference Parente MP, Jorge RM, Mascarenhas T, Fernandes AA, Martins JA (2008) Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J Pelvic Floor Dysfunct 19:65–71PubMed Parente MP, Jorge RM, Mascarenhas T, Fernandes AA, Martins JA (2008) Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J Pelvic Floor Dysfunct 19:65–71PubMed
10.
go back to reference Majumder S, Roychowdhury A, Pal S (2009) Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex. J Biomech 42:1475–1482PubMedCrossRef Majumder S, Roychowdhury A, Pal S (2009) Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex. J Biomech 42:1475–1482PubMedCrossRef
11.
go back to reference Li JM, Bardana DD, Stewart AJ (2011) Augmented virtuality for arthroscopic knee surgery. Med Image Comput Comput Assist Interv 14:186–193PubMed Li JM, Bardana DD, Stewart AJ (2011) Augmented virtuality for arthroscopic knee surgery. Med Image Comput Comput Assist Interv 14:186–193PubMed
12.
go back to reference Blemker SS, Asakawa DS, Gold GE, Delp SL (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25:441–451PubMedCrossRef Blemker SS, Asakawa DS, Gold GE, Delp SL (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25:441–451PubMedCrossRef
Metadata
Title
Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model
Authors
Michel Cosson
C. Rubod
A. Vallet
J. F. Witz
P. Dubois
M. Brieu
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
International Urogynecology Journal / Issue 1/2013
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-012-1842-8

Other articles of this Issue 1/2013

International Urogynecology Journal 1/2013 Go to the issue

Urogynecology Digest

Urogynecology digest