Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 12/2015

01-12-2015 | knee

Unicompartmental knee arthroplasty cannot restore the functional flexion axis of a living knee to normal

Authors: Tomoharu Mochizuki, Takashi Sato, Osamu Tanifuji, Koichi Kobayashi, Hiroshi Yamagiwa, Satoshi Watanabe, Yoshio Koga, Go Omori, Naoto Endo

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 12/2015

Login to get access

Abstract

Purpose

The purpose of this study was to investigate the hypothesis that a medial unicompartmental knee arthroplasty might restore the functional flexion axis of a knee to normal. The flexion axis can be indirectly identified by tracking the vertical translation of anatomic landmarks that basically move around the flexion axis during a knee motion. If a unicompartmental knee could help restore the normal flexion axis, the anatomic landmarks after the arthroplasty would show the vertical translation similar to those of normal knees during a knee flexion.

Methods

While performing a squatting motion, the kinematics of 17 knees were determined before and after a medial unicompartmental arthroplasty to calculate the vertical translation of a clinical epicondylar axis, using a three- to two-dimensional registration technique through a single-plane fluoroscopic system incorporating a biplanar static radiography. The results were compared with a normal data, and a statistical analysis including a two-way repeated-measured analysis of variance was performed.

Results

For the medial end, from 10° to 100° knee flexion, normal, osteoarthritic, and unicompartmental knees had the average superior vertical translation of 7.3 ± 4.2, 4.3 ± 7.2, and 2.4 ± 3.1 mm, respectively, with statistical significance between normal and unicompartmental knees (p < 0.001). The vertical translation did not return to normal post-implantation.

Conclusions

A unicompartmental knee could not reproduce the normal flexion axis. As for clinical relevance, the changes of the implant design and surgical procedure may be necessary to obtain the normal flexion axis reproducing a normal motion.

Level of evidence

IV.
Literature
1.
go back to reference Akizuki S, Mueller JK, Horiuchi H, Matsunaga D, Shibakawa A, Komistek RD (2009) In vivo determination of kinematics for subjects having a zimmer unicompartmental high flex knee system. J Arthroplast 24:963–971CrossRef Akizuki S, Mueller JK, Horiuchi H, Matsunaga D, Shibakawa A, Komistek RD (2009) In vivo determination of kinematics for subjects having a zimmer unicompartmental high flex knee system. J Arthroplast 24:963–971CrossRef
2.
go back to reference Argenson JN, Chevrol-Benkeddache Y, Aubaniac JM (2002) Modern unicompartmental knee arthroplasty with cement. J Bone Joint Surg Am 84:2235–2239PubMed Argenson JN, Chevrol-Benkeddache Y, Aubaniac JM (2002) Modern unicompartmental knee arthroplasty with cement. J Bone Joint Surg Am 84:2235–2239PubMed
3.
go back to reference Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson DT, Agostini S (2002) In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplast 17:1049–1054CrossRef Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson DT, Agostini S (2002) In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplast 17:1049–1054CrossRef
4.
go back to reference Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image matching technique. J Arthroplast 20:1060–1067CrossRef Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image matching technique. J Arthroplast 20:1060–1067CrossRef
5.
go back to reference Becker R, Mauer C, Stärke C, Brosz M, Zantop T, Lohmann CH, Schulze M (2013) Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system. Knee Surg Sports Traumatol Arthrosc 21(11):2427–2432CrossRefPubMed Becker R, Mauer C, Stärke C, Brosz M, Zantop T, Lohmann CH, Schulze M (2013) Anteroposterior and rotational stability in fixed and mobile bearing unicondylar knee arthroplasty: a cadaveric study using the robotic force sensor system. Knee Surg Sports Traumatol Arthrosc 21(11):2427–2432CrossRefPubMed
6.
go back to reference Berger RA, Nedeff DD, Barden RM, Sheinkop MM, Jacobs JJ, Rosenberg AG, Galante JO (1999) Unicompartmental knee arthroplasty: clinical experience at 6- to 10-year follow-up. Clin Orthop Relat Res 367:50–60CrossRefPubMed Berger RA, Nedeff DD, Barden RM, Sheinkop MM, Jacobs JJ, Rosenberg AG, Galante JO (1999) Unicompartmental knee arthroplasty: clinical experience at 6- to 10-year follow-up. Clin Orthop Relat Res 367:50–60CrossRefPubMed
7.
go back to reference Blaha JD (2002) A medial pivot geometry. Orthpedics 25:963–964 Blaha JD (2002) A medial pivot geometry. Orthpedics 25:963–964
8.
go back to reference Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G (2003) Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res 410:25–34CrossRefPubMed Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G (2003) Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res 410:25–34CrossRefPubMed
9.
go back to reference Blaha JD (2004) The rationale for a total knee implant that confers anteroposterior stability throughout range of motion. J Arthroplast 19:22–26CrossRef Blaha JD (2004) The rationale for a total knee implant that confers anteroposterior stability throughout range of motion. J Arthroplast 19:22–26CrossRef
10.
go back to reference Brandt KD, Dieppe P, Radin EL (2008) Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am 34:531–559CrossRefPubMed Brandt KD, Dieppe P, Radin EL (2008) Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am 34:531–559CrossRefPubMed
11.
go back to reference Brouwer GM, van Tol AW, Bergink AP, Belo JN, Bernsen RM, Reijman M, Pols HA, Bierma-Zeinstra SM (2007) Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum 56:1204–1211CrossRefPubMed Brouwer GM, van Tol AW, Bergink AP, Belo JN, Bernsen RM, Reijman M, Pols HA, Bierma-Zeinstra SM (2007) Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum 56:1204–1211CrossRefPubMed
12.
go back to reference Carr A, Keyes G, Miller R, O’Connor J, Goodfellow J (1993) Medial unicompartmental arthroplasty: a survival study of the Oxford meniscal knee. Clin Orthop Relat Res 295:205–213PubMed Carr A, Keyes G, Miller R, O’Connor J, Goodfellow J (1993) Medial unicompartmental arthroplasty: a survival study of the Oxford meniscal knee. Clin Orthop Relat Res 295:205–213PubMed
13.
go back to reference Cerejo R, Dunlop DD, Cahue S, Channin D, Song J, Sharma L (2002) The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease. Arthritis Rheum 46:2632–2636CrossRefPubMed Cerejo R, Dunlop DD, Cahue S, Channin D, Song J, Sharma L (2002) The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease. Arthritis Rheum 46:2632–2636CrossRefPubMed
14.
go back to reference Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118CrossRefPubMed Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118CrossRefPubMed
15.
go back to reference Colle F, Bignozzi S, Lopomo N, Zaffagnini S, Sun L, Marcacci M (2012) Knee functional flexion axis in osteoarthritic patients: comparison in vivo with transepicondylar axis using a navigation system. Knee Surg Sports Traumatol Arthrosc 20:552–558CrossRefPubMed Colle F, Bignozzi S, Lopomo N, Zaffagnini S, Sun L, Marcacci M (2012) Knee functional flexion axis in osteoarthritic patients: comparison in vivo with transepicondylar axis using a navigation system. Knee Surg Sports Traumatol Arthrosc 20:552–558CrossRefPubMed
16.
go back to reference Eckhoff DG, Bach JM, Spitzer VM, Reining KD, Bagur MM, Baldini TH, Flannery NM (2005) Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am 87:71–80CrossRefPubMed Eckhoff DG, Bach JM, Spitzer VM, Reining KD, Bagur MM, Baldini TH, Flannery NM (2005) Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am 87:71–80CrossRefPubMed
17.
go back to reference Haaker P, Klotz E, Koppe R, Linde R (1990/91) Real-time distortion correction of digital X-ray 2/TV-systems: an application example for digital flashing tomosynthesis (DFTS). Int J Card Imaging 6:36–45 Haaker P, Klotz E, Koppe R, Linde R (1990/91) Real-time distortion correction of digital X-ray 2/TV-systems: an application example for digital flashing tomosynthesis (DFTS). Int J Card Imaging 6:36–45
18.
go back to reference Hollister AM, Jatana A, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268PubMed Hollister AM, Jatana A, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268PubMed
19.
go back to reference Kobayashi K, Tanaka N, Odagawa K, Sakamoto M, Tanabe Y (2009) Image-based matching for natural knee kinematics measurement using single-plane fluoroscopy. J Jpn Soc Exp Mech 9:162–166 Kobayashi K, Tanaka N, Odagawa K, Sakamoto M, Tanabe Y (2009) Image-based matching for natural knee kinematics measurement using single-plane fluoroscopy. J Jpn Soc Exp Mech 9:162–166
20.
go back to reference Kobayashi K, Sakamoto K, Tanabe Y, Koga Y, Sakamoto K, Tanabe Y (2009) Automated image registration for three-dimensional alignment of entire lower extremity and implant position using bi-plane radiography. J Biomech 42:2818–2822CrossRefPubMed Kobayashi K, Sakamoto K, Tanabe Y, Koga Y, Sakamoto K, Tanabe Y (2009) Automated image registration for three-dimensional alignment of entire lower extremity and implant position using bi-plane radiography. J Biomech 42:2818–2822CrossRefPubMed
21.
go back to reference Mochizuki T, Sato T, Tanifuji O, Kobayashi K, Koga Y, Yamagiwa H, Omori G, Endo N (2013) In vivo pre- and postoperative three-dimensional knee kinematics in unicompartmental knee arthroplasty. J Orthop Sci 18:54–60CrossRefPubMed Mochizuki T, Sato T, Tanifuji O, Kobayashi K, Koga Y, Yamagiwa H, Omori G, Endo N (2013) In vivo pre- and postoperative three-dimensional knee kinematics in unicompartmental knee arthroplasty. J Orthop Sci 18:54–60CrossRefPubMed
22.
go back to reference Mochizuki T, Sato T, Blaha JD, Tanifuji O, Kobayashi K, Yamagiwa H, Watanabe S, Matsueda M, Koga Y, Omori G, Endo N (2013) Kinematics of the knee after unicompartmental arthroplasty is not the same as normal and is similar to the kinematics of the knee with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 22:1911–1917CrossRefPubMed Mochizuki T, Sato T, Blaha JD, Tanifuji O, Kobayashi K, Yamagiwa H, Watanabe S, Matsueda M, Koga Y, Omori G, Endo N (2013) Kinematics of the knee after unicompartmental arthroplasty is not the same as normal and is similar to the kinematics of the knee with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 22:1911–1917CrossRefPubMed
23.
go back to reference Mochizuki T, Sato T, Blaha JD, Tanifuji O, Kobayashi K, Yamagiwa H, Watanabe S, Koga Y, Omori G, Endo N (2014) The clinical epicondylar axis is not the functional flexion axis of the human knee. J Orthop Sci 19:451–456CrossRefPubMed Mochizuki T, Sato T, Blaha JD, Tanifuji O, Kobayashi K, Yamagiwa H, Watanabe S, Koga Y, Omori G, Endo N (2014) The clinical epicondylar axis is not the functional flexion axis of the human knee. J Orthop Sci 19:451–456CrossRefPubMed
24.
go back to reference Most E, Axe J, Rubash H, Li G (2004) Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech 37:1743–1748CrossRefPubMed Most E, Axe J, Rubash H, Li G (2004) Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech 37:1743–1748CrossRefPubMed
25.
go back to reference Patil S, Colwell CW Jr, Ezzet KA, D’Lima DD (2005) Can normal knee kinematics be restored with unicompartmental knee replacement? J Bone Joint Surg Am 87(2):332–338CrossRefPubMed Patil S, Colwell CW Jr, Ezzet KA, D’Lima DD (2005) Can normal knee kinematics be restored with unicompartmental knee replacement? J Bone Joint Surg Am 87(2):332–338CrossRefPubMed
26.
go back to reference Sato T, Koga Y, Omori G (2004) Three-dimensional lower extremity alignment assessment system. J Arthroplast 19:620–628CrossRef Sato T, Koga Y, Omori G (2004) Three-dimensional lower extremity alignment assessment system. J Arthroplast 19:620–628CrossRef
27.
go back to reference Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195CrossRefPubMed Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195CrossRefPubMed
28.
go back to reference Tanifuji O, Sato T, Kobayashi K, Mochizuki T, Koga Y, Yamagiwa H, Omori G, Endo N (2011) Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy. J Orthop Sci 16:710–718CrossRefPubMed Tanifuji O, Sato T, Kobayashi K, Mochizuki T, Koga Y, Yamagiwa H, Omori G, Endo N (2011) Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy. J Orthop Sci 16:710–718CrossRefPubMed
29.
go back to reference Tanifuji O, Sato T, Kobayashi K, Mochizuki T, Koga Y, Yamagiwa H, Omori G, Endo N (2013) Three-dimensional in vivo motion analysis of normal knees employing transepicondylar axis as an evaluation parameter. Knee Surg Sports Traumatol Arthrosc 21:2301–2308CrossRefPubMed Tanifuji O, Sato T, Kobayashi K, Mochizuki T, Koga Y, Yamagiwa H, Omori G, Endo N (2013) Three-dimensional in vivo motion analysis of normal knees employing transepicondylar axis as an evaluation parameter. Knee Surg Sports Traumatol Arthrosc 21:2301–2308CrossRefPubMed
30.
go back to reference Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplast 16:493–497CrossRef Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplast 16:493–497CrossRef
Metadata
Title
Unicompartmental knee arthroplasty cannot restore the functional flexion axis of a living knee to normal
Authors
Tomoharu Mochizuki
Takashi Sato
Osamu Tanifuji
Koichi Kobayashi
Hiroshi Yamagiwa
Satoshi Watanabe
Yoshio Koga
Go Omori
Naoto Endo
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 12/2015
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-014-3296-7

Other articles of this Issue 12/2015

Knee Surgery, Sports Traumatology, Arthroscopy 12/2015 Go to the issue