Skip to main content
Top
Published in: Journal of Orthopaedic Science 6/2011

01-11-2011 | Original Article

Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy

Authors: Osamu Tanifuji, Takashi Sato, Koichi Kobayashi, Tomoharu Mochizuki, Yoshio Koga, Hiroshi Yamagiwa, Go Omori, Naoto Endo

Published in: Journal of Orthopaedic Science | Issue 6/2011

Login to get access

Abstract

Background

Analysis of the movement of anatomically defined reference axes at the femoral condyles relative to the tibia is appropriate for evaluating knee kinematics. However, such parameters have been previously employed only in studies utilizing stop-motion techniques. The purpose of this study was to evaluate in vivo dynamic kinematics for full range of motion in normal knees using the three-dimensional to two-dimensional registration technique and to compare them with previously reported normal knee kinematics obtained via stop-motion techniques.

Methods

Dynamic motion of the right knee was analyzed in 20 healthy volunteers (10 female, 10 male; mean age 37.2 years). Knee motion was observed when subjects squatted from standing with the knee fully extended to maximum flexion. We determined the following parameters: (1) changes to angles of the geometric center axis (GCA) on the tibial axial plane (rotation angle); (2) anteroposterior translations of the medial and lateral ends of the GCA; and (3) motion patterns in each phase during knee flexion.

Results

All subjects exhibited femoral external rotation (26.1°) relative to the tibia throughout knee flexion. The medial femoral condyle demonstrated anterior translation (5.5 mm) from full extension to 100° flexion, and demonstrated posterior translation (3.9 mm) after 100°, while the lateral femoral condyle demonstrated consistent posterior translation (15.6 mm) throughout knee flexion. All subjects showed medial pivot motion from full extension to nearly 120° flexion. From 120° flexion, bicondylar rollback motion was observed.

Discussion

Although the behavior of the medial femoral condyle in our analysis differed somewhat from that seen in previous cadaver studies, the results obtained using dynamic analysis were generally equivalent to those obtained in previous studies employing stop-motion techniques. These results provide control data for future dynamic kinematic analyses of pathological knees.
Literature
1.
go back to reference Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–66.PubMedCrossRef Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–66.PubMedCrossRef
2.
go back to reference Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–95.PubMedCrossRef Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–95.PubMedCrossRef
3.
go back to reference Pinskerova V, Samuelson KM, Stammers J, Maruthainar K, Sosna A, Freeman MA. The knee in full flexion. J Bone Joint Surg Br. 2009;91:830–4.PubMed Pinskerova V, Samuelson KM, Stammers J, Maruthainar K, Sosna A, Freeman MA. The knee in full flexion. J Bone Joint Surg Br. 2009;91:830–4.PubMed
4.
go back to reference Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech. 1985;18:487–99.PubMedCrossRef Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech. 1985;18:487–99.PubMedCrossRef
5.
go back to reference Walker PS, Kurosawa H, Rovick JS, Zimmerman RA. External knee joint design based on normal motion. J Rehabil Res Dev. 1985;22:9–22.PubMedCrossRef Walker PS, Kurosawa H, Rovick JS, Zimmerman RA. External knee joint design based on normal motion. J Rehabil Res Dev. 1985;22:9–22.PubMedCrossRef
6.
go back to reference Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.PubMedCrossRef Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.PubMedCrossRef
7.
go back to reference Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196–8.PubMedCrossRef Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196–8.PubMedCrossRef
8.
go back to reference Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1199–200.PubMedCrossRef Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1199–200.PubMedCrossRef
9.
go back to reference Most E, Axe J, Rubash H, Li G. Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech. 2004;37:1743–8.PubMedCrossRef Most E, Axe J, Rubash H, Li G. Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech. 2004;37:1743–8.PubMedCrossRef
11.
go back to reference Asano T, Akagi M, Nakamura T. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image matching technique. J Arthroplasty. 2005;20:1060–7.PubMedCrossRef Asano T, Akagi M, Nakamura T. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image matching technique. J Arthroplasty. 2005;20:1060–7.PubMedCrossRef
12.
go back to reference Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.PubMedCrossRef Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.PubMedCrossRef
13.
go back to reference Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech. 1998;13:455–72.CrossRef Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech. 1998;13:455–72.CrossRef
14.
go back to reference Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Yoshikawa H, Tamura S. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imaging. 2004;23:602–12.PubMedCrossRef Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Yoshikawa H, Tamura S. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imaging. 2004;23:602–12.PubMedCrossRef
15.
go back to reference Li G, Suggs J, Hanson G, Durbhakula S, Johnson T, Freiberg A. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am. 2006;88:395–402.PubMedCrossRef Li G, Suggs J, Hanson G, Durbhakula S, Johnson T, Freiberg A. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am. 2006;88:395–402.PubMedCrossRef
16.
go back to reference Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W. In vivo determination of total knee arthroplasty kinematics. J Arthroplasty. 2008;23:41–50.PubMedCrossRef Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W. In vivo determination of total knee arthroplasty kinematics. J Arthroplasty. 2008;23:41–50.PubMedCrossRef
17.
go back to reference Tamaki M, Tomita T, Yamazaki T, Hozack WJ, Yoshikawa H, Sugamoto K. In vivo kinematic analysis of a high-flexion posterior stabilized fixed-bearing knee prosthesis in deep knee-bending motion. J Arthroplasty. 2008;23:879–85.PubMedCrossRef Tamaki M, Tomita T, Yamazaki T, Hozack WJ, Yoshikawa H, Sugamoto K. In vivo kinematic analysis of a high-flexion posterior stabilized fixed-bearing knee prosthesis in deep knee-bending motion. J Arthroplasty. 2008;23:879–85.PubMedCrossRef
18.
go back to reference Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.PubMedCrossRef Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.PubMedCrossRef
19.
go back to reference Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–34.PubMedCrossRef Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–34.PubMedCrossRef
20.
go back to reference Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am. 2006;88:1826–34.PubMedCrossRef Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am. 2006;88:1826–34.PubMedCrossRef
21.
go back to reference Sato T, Koga Y, Omori G. Three-dimensional lower extremity alignment assessment system. J Arthroplasty. 2004;19:620–8.PubMedCrossRef Sato T, Koga Y, Omori G. Three-dimensional lower extremity alignment assessment system. J Arthroplasty. 2004;19:620–8.PubMedCrossRef
22.
go back to reference Kobayashi K, Tanaka N, Odagawa K, Sakamoto M, Tanabe Y. Image-based matching for natural knee kinematics measurement using single-plane fluoroscopy. J Jpn Soc Exp Mech. 2009;9:162–6. Kobayashi K, Tanaka N, Odagawa K, Sakamoto M, Tanabe Y. Image-based matching for natural knee kinematics measurement using single-plane fluoroscopy. J Jpn Soc Exp Mech. 2009;9:162–6.
23.
go back to reference Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.PubMedCrossRef Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.PubMedCrossRef
24.
go back to reference Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G. Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res. 2003;410:25–34.PubMedCrossRef Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G. Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res. 2003;410:25–34.PubMedCrossRef
25.
go back to reference Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.PubMedCrossRef Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.PubMedCrossRef
Metadata
Title
Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy
Authors
Osamu Tanifuji
Takashi Sato
Koichi Kobayashi
Tomoharu Mochizuki
Yoshio Koga
Hiroshi Yamagiwa
Go Omori
Naoto Endo
Publication date
01-11-2011
Publisher
Springer Japan
Published in
Journal of Orthopaedic Science / Issue 6/2011
Print ISSN: 0949-2658
Electronic ISSN: 1436-2023
DOI
https://doi.org/10.1007/s00776-011-0149-9

Other articles of this Issue 6/2011

Journal of Orthopaedic Science 6/2011 Go to the issue